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Outline
• Standard and random lasers 
• Statistical physics approach to laser physics  

   Theory for ultrafast mode-locked multimode lasers  
   (order, closed cavity) 
   Theory for random lasers: a mode-locked spin-glass theory    
(disorder, open cavity)

• The narrow-band solution, phase diagrams, replica symmetry 
breaking, a new overlap: intensity fluctuation overlap  

• Intermezzo: the experimental measurement of the Parisi 
distribution of overlaps 

• In between theory and experiment: a mode-locking model  
   Monte Carlo dynamics simulation with exchange Monte Carlo, 
   GPU parallel computing

• Power distribution among modes in the glassy light regime: 
condensation vs equipartition at high pumping 

• Outlook (work in progress) 
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• 1953-1955: Charles H. Townes, Nikolay Basov, Aleksandr 
Prokhorov: Microwave Amplification by Stimulated Emission of 
Radiation – MASER. They implemented continuous output, gain media 
with multienergy level atoms, optical pumping for population inversion.
– Nobel Prize in Physics 1964, "for fundamental work in the field of 

quantum electronics, which has led to the construction of oscillators 
and amplifiers based on the maser–laser principle”

• 1958: Infrared and Optical Masers, Arthur L. Schawlow and Charles H. 
Townes:     
          — Optical Maser = Laser  :-) by Gordon Gould (1957, 1959).             
          — Also terms Xaser, Uaser, …, Raser….  :-/

• Laser can be single mode or multimode,  
continuous wave (laser pointer) or pulsed (“ns”, “ps”, “fs”), ...

• Standard and random lasers
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Two essential components
- Cavity Coherent feedback
- Gain medium Amplification by 

                  Stimulated Emission
- Saturable absorber Passive mode-locking

Ultrafast multimode 
Laser

1953-1955: Charles H. Townes, Nikolay Basov, Aleksandr Prokhorov
Nobel prize in physics 1964
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Two essential components
- Cavity Coherent feedback
- Gain medium Amplification by 

Stimulated Emission
- Saturable absorber Passive mode-locking

Ultrafast Multimode 
Laser
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The saturable absorber induces self-starting synchronous oscillations of 
modes in the cavity: passive mode-locking -> fast pulses.

Ultrafast Multimode Laser

Related to a non-linear frequency matching condition  
occurring in the saturable absorber:
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The saturable absorber induces self-starting synchronous oscillations of 
modes in the cavity: passive mode-locking -> fast pulses.

Ultrafast Multimode Laser

In*the*lasing*regime,*the*phases*of*the*
amplified*modes*acquire*a*linear*
rela0onship*to*the*frequencies:*

Mode!locking/Phase!locking!
takes*place*above*the*lasing*op0cal*power*threshold.*

It*is*triggered*by*a*non%linear*frequency*matching*condi0on**
occurring*in*the*saturable*absorber:*

Notes on the derivation of the RL Hamiltonian

Luca Leuzzi⇤

IPCF-CNR, UOS Kerberos Roma, Piazzale A. Moro 2, I-00185, Roma, Italy

Notes for the derivation of the RL Hamiltonian with di↵erent approaches: (i) optical cycle average
of the electromangetic energy; (ii) Quantum field theory for open optical cavities; (iii) multiscale
expansion for small nonlinear polarization; (iv) comparison with Haus master equation.

The complex amplitude model. — For a closed cavity, localized modes form a complete set and the electro-magnetic
field E(r, t) can be expanded in terms of normal modes En(r) with time-dependent complex amplitudes an(t)[1]. In
open cavities a continuous spectrum of radiation modes is also present. The contributions of radiative and localized
modes can be separated by a suitable projection onto two orthogonal subspaces [2, 3]. This leads to an e↵ective
theory on the subspace of localized modes in which they exchange a linear o↵-diagonal e↵ective damping coupling.
Radiation losses and gain are accounted for by additional linear terms (diagonal when the net gain is homogeneous),
and the presence of a thermal bath is represented by the fluctuations due to the spontaneous emission. Nonlinear
couplings arise from gain saturation and from the optical Kerr e↵ect. At equilibrium with the pump mechanism, the
complex amplitudes an(t) are linked by a constraint given by the total optical intensity pumped into the system

EP = ✏N =
NX

m=1

|am|
2

where N is the number of modes and ✏ the average energy per mode. The general Hamiltonian, derived by di↵erent
approaches [1, 4, 5], reads
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where J~np = Jn1...np and the second sum ranges over all distinct 4-ples for which the so-called ML condition holds:
!n1 � !n2 + !n3 � !n4 = 0. The coupling coe�cient J~n4 represents the spatial overlap of the electromagnetic fields
modulated by non-linear �(3)({!}; r) susceptibility:
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with ↵j = x, y, z, and ~n4 = {n1, n2, n3, n4}. The linear coe�cient J~n2 yields di↵erent contributions depending on
medium randomness and cavity leakage:
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The linear diagonal terms of J~n2 depend on gain and loss profiles for the passive modes. A possible non-uniform
distribution of the gain - and the related inhomogeneous linear susceptibility �

(1)(r) - yields the spatial overlap of
localized eigenmodes, i. e., J inh, Eq. (3). Besides, in the open cavity scenario, the linear o↵-diagonal coupling terms
also account for the presence of a continuous spectrum, and they correspond to the e↵ective damping contribution
J
rad obtained integrating out radiation modes [2, 3]. Taking the purely nonlinear interaction of a discrete set of modes

corresponds to the strong cavity limit, J rad = 0, with homogeneous gain (because of orthogonality of {En}’s it is
J
inh = 0). Only linear diagonal terms remain in this limit.
We build a mean-field theory in which the system is fully connected, that is, the network of interacting modes is a

complete graph. This amounts to adopt a narrow bandwidth approximation for the gain profile in which !n ' !0, for
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Complex Langevin dynamics
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of the electromangetic energy; (ii) Quantum field theory for open optical cavities; (iii) multiscale
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The complex amplitude model. — For a closed cavity, localized modes form a complete set and the electro-magnetic
field E(r, t) can be expanded in terms of normal modes En(r) with time-dependent complex amplitudes an(t)[1]. In
open cavities a continuous spectrum of radiation modes is also present. The contributions of radiative and localized
modes can be separated by a suitable projection onto two orthogonal subspaces [2, 3]. This leads to an e↵ective
theory on the subspace of localized modes in which they exchange a linear o↵-diagonal e↵ective damping coupling.
Radiation losses and gain are accounted for by additional linear terms (diagonal when the net gain is homogeneous),
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couplings arise from gain saturation and from the optical Kerr e↵ect. At equilibrium with the pump mechanism, the
complex amplitudes an(t) are linked by a constraint given by the total optical intensity pumped into the system
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The linear diagonal terms of J~n2 depend on gain and loss profiles for the passive modes. A possible non-uniform
distribution of the gain - and the related inhomogeneous linear susceptibility �

(1)(r) - yields the spatial overlap of
localized eigenmodes, i. e., J inh, Eq. (3). Besides, in the open cavity scenario, the linear o↵-diagonal coupling terms
also account for the presence of a continuous spectrum, and they correspond to the e↵ective damping contribution
J
rad obtained integrating out radiation modes [2, 3]. Taking the purely nonlinear interaction of a discrete set of modes

corresponds to the strong cavity limit, J rad = 0, with homogeneous gain (because of orthogonality of {En}’s it is
J
inh = 0). Only linear diagonal terms remain in this limit.
We build a mean-field theory in which the system is fully connected, that is, the network of interacting modes is a
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The complex amplitude model. — For a closed cavity, localized modes form a complete set and the electro-magnetic
field E(r, t) can be expanded in terms of normal modes En(r) with time-dependent complex amplitudes an(t)[1]. In
open cavities a continuous spectrum of radiation modes is also present. The contributions of radiative and localized
modes can be separated by a suitable projection onto two orthogonal subspaces [2, 3]. This leads to an e↵ective
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also account for the presence of a continuous spectrum, and they correspond to the e↵ective damping contribution
J
rad obtained integrating out radiation modes [2, 3]. Taking the purely nonlinear interaction of a discrete set of modes

corresponds to the strong cavity limit, J rad = 0, with homogeneous gain (because of orthogonality of {En}’s it is
J
inh = 0). Only linear diagonal terms remain in this limit.
We build a mean-field theory in which the system is fully connected, that is, the network of interacting modes is a

complete graph. This amounts to adopt a narrow bandwidth approximation for the gain profile in which !n ' !0, for
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Notes for the derivation of the RL Hamiltonian with di↵erent approaches: (i) optical cycle average
of the electromangetic energy; (ii) Quantum field theory for open optical cavities; (iii) multiscale
expansion for small nonlinear polarization; (iv) comparison with Haus master equation.

The complex amplitude model. — For a closed cavity, localized modes form a complete set and the electro-magnetic
field E(r, t) can be expanded in terms of normal modes En(r) with time-dependent complex amplitudes an(t)[1]. In
open cavities a continuous spectrum of radiation modes is also present. The contributions of radiative and localized
modes can be separated by a suitable projection onto two orthogonal subspaces [2, 3]. This leads to an e↵ective
theory on the subspace of localized modes in which they exchange a linear o↵-diagonal e↵ective damping coupling.
Radiation losses and gain are accounted for by additional linear terms (diagonal when the net gain is homogeneous),
and the presence of a thermal bath is represented by the fluctuations due to the spontaneous emission. Nonlinear
couplings arise from gain saturation and from the optical Kerr e↵ect. At equilibrium with the pump mechanism, the
complex amplitudes an(t) are linked by a constraint given by the total optical intensity pumped into the system
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where N is the number of modes and ✏ the average energy per mode. The general Hamiltonian, derived by di↵erent
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where J~np = Jn1...np and the second sum ranges over all distinct 4-ples for which the so-called ML condition holds:
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The linear diagonal terms of J~n2 depend on gain and loss profiles for the passive modes. A possible non-uniform
distribution of the gain - and the related inhomogeneous linear susceptibility �

(1)(r) - yields the spatial overlap of
localized eigenmodes, i. e., J inh, Eq. (3). Besides, in the open cavity scenario, the linear o↵-diagonal coupling terms
also account for the presence of a continuous spectrum, and they correspond to the e↵ective damping contribution
J
rad obtained integrating out radiation modes [2, 3]. Taking the purely nonlinear interaction of a discrete set of modes

corresponds to the strong cavity limit, J rad = 0, with homogeneous gain (because of orthogonality of {En}’s it is
J
inh = 0). Only linear diagonal terms remain in this limit.
We build a mean-field theory in which the system is fully connected, that is, the network of interacting modes is a

complete graph. This amounts to adopt a narrow bandwidth approximation for the gain profile in which !n ' !0, for
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Īk ⌘
1

NR

NRX

↵=1

I
↵
k

Q↵� ⌘
1

N

NX

k=1

�↵
k�

�
k

�↵
k ⌘

I
↵
k � ĪkqPN
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The complex amplitude model. — For a closed cavity, localized modes form a complete set and the electro-magnetic
field E(r, t) can be expanded in terms of normal modes En(r) with time-dependent complex amplitudes an(t)[1]. In
open cavities a continuous spectrum of radiation modes is also present. The contributions of radiative and localized
modes can be separated by a suitable projection onto two orthogonal subspaces [2, 3]. This leads to an e↵ective
theory on the subspace of localized modes in which they exchange a linear o↵-diagonal e↵ective damping coupling.
Radiation losses and gain are accounted for by additional linear terms (diagonal when the net gain is homogeneous),
and the presence of a thermal bath is represented by the fluctuations due to the spontaneous emission. Nonlinear
couplings arise from gain saturation and from the optical Kerr e↵ect. At equilibrium with the pump mechanism, the
complex amplitudes an(t) are linked by a constraint given by the total optical intensity pumped into the system
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where J~np = Jn1...np and the second sum ranges over all distinct 4-ples for which the so-called ML condition holds:
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The linear diagonal terms of J~n2 depend on gain and loss profiles for the passive modes. A possible non-uniform
distribution of the gain - and the related inhomogeneous linear susceptibility �

(1)(r) - yields the spatial overlap of
localized eigenmodes, i. e., J inh, Eq. (3). Besides, in the open cavity scenario, the linear o↵-diagonal coupling terms
also account for the presence of a continuous spectrum, and they correspond to the e↵ective damping contribution
J
rad obtained integrating out radiation modes [2, 3]. Taking the purely nonlinear interaction of a discrete set of modes

corresponds to the strong cavity limit, J rad = 0, with homogeneous gain (because of orthogonality of {En}’s it is
J
inh = 0). Only linear diagonal terms remain in this limit.
We build a mean-field theory in which the system is fully connected, that is, the network of interacting modes is a

complete graph. This amounts to adopt a narrow bandwidth approximation for the gain profile in which !n ' !0, for
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�
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expansion for small nonlinear polarization; (iv) comparison with Haus master equation.

The complex amplitude model. — For a closed cavity, localized modes form a complete set and the electro-magnetic
field E(r, t) can be expanded in terms of normal modes En(r) with time-dependent complex amplitudes an(t)[1]. In
open cavities a continuous spectrum of radiation modes is also present. The contributions of radiative and localized
modes can be separated by a suitable projection onto two orthogonal subspaces [2, 3]. This leads to an e↵ective
theory on the subspace of localized modes in which they exchange a linear o↵-diagonal e↵ective damping coupling.
Radiation losses and gain are accounted for by additional linear terms (diagonal when the net gain is homogeneous),
and the presence of a thermal bath is represented by the fluctuations due to the spontaneous emission. Nonlinear
couplings arise from gain saturation and from the optical Kerr e↵ect. At equilibrium with the pump mechanism, the
complex amplitudes an(t) are linked by a constraint given by the total optical intensity pumped into the system

EP = ✏N =
NX

m=1

|am|
2

where N is the number of modes and ✏ the average energy per mode. The general Hamiltonian, derived by di↵erent
approaches [1, 4, 5], reads
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where J~np = Jn1...np and the second sum ranges over all distinct 4-ples for which the so-called ML condition holds:
!n1 � !n2 + !n3 � !n4 = 0. The coupling coe�cient J~n4 represents the spatial overlap of the electromagnetic fields
modulated by non-linear �(3)({!}; r) susceptibility:
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with ↵j = x, y, z, and ~n4 = {n1, n2, n3, n4}. The linear coe�cient J~n2 yields di↵erent contributions depending on
medium randomness and cavity leakage:
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The linear diagonal terms of J~n2 depend on gain and loss profiles for the passive modes. A possible non-uniform
distribution of the gain - and the related inhomogeneous linear susceptibility �

(1)(r) - yields the spatial overlap of
localized eigenmodes, i. e., J inh, Eq. (3). Besides, in the open cavity scenario, the linear o↵-diagonal coupling terms
also account for the presence of a continuous spectrum, and they correspond to the e↵ective damping contribution
J
rad obtained integrating out radiation modes [2, 3]. Taking the purely nonlinear interaction of a discrete set of modes

corresponds to the strong cavity limit, J rad = 0, with homogeneous gain (because of orthogonality of {En}’s it is
J
inh = 0). Only linear diagonal terms remain in this limit.
We build a mean-field theory in which the system is fully connected, that is, the network of interacting modes is a

complete graph. This amounts to adopt a narrow bandwidth approximation for the gain profile in which !n ' !0, for
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Complex Langevin dynamics
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Haus master equation
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Intensity fluctuation overlap:
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Īk ⌘
1

NR

NRX

↵=1

I
↵
k

6

Qab ⌘
1

N

X

k

⇣
|a

↵
k |

2
|a

�
k |

2
� h|a

↵
k |

2
ih|a

�
k |

2
i

⌘
! h|a

↵
k |

2
|a

�
k |

2
i�h|a

↵
k |

2
ih|a

�
k |

2
i hf(a)i ⌘

1

NR

NRX

↵=1

f(a↵) I
↵
k = |a

↵
k |

2

(34)
ak(!; t) = Ak(!; t)eı�k(!;t)

Ik(!) = h|ak(!; t)|2it

�n1 � �n2 + �n3 � �n4 = 0

[1] C. Conti and L. Leuzzi, Phys. Rev. B 83, 134204 (2011).
[2] G. Hackenbroich, C. Viviescas, and F. Haake, Phys. Rev. A 68, 063805 (2003).
[3] C. Viviescas and G. Hackenbroich, Phys. Rev. A 67, 013805 (2003).
[4] L. Angelani, C. Conti, G. Ruocco, and F. Zamponi, Phys. Rev. B 74, 104207 (2006).
[5] L. Leuzzi, C. Conti, V. Folli, L. Angelani, and G. Ruocco, Phys. Rev. Lett. 102, 083901 (2009).
[6] T. M. Nieuwenhuizen, Phys. Rev. Lett. 74, 4289 (1995).
[7] A. Crisanti and L. Leuzzi, Phys. Rev. Lett. 93, 217203 (2004).
[8] A. Crisanti and L. Leuzzi, Phys. Rev. B 73, 014412 (2006).
[9] A. Crisanti and L. Leuzzi, Phys. Rev. B 75, 144301 (2007).

[10] A. Crisanti and L. Leuzzi, Nucl. Phys. B 870, 176 (2013).
[11] C. Conti and A. Fratalocchi, Nat. Physics 4, 794 (2008).
[12] J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, Nat. Photon. 3, 279 (2009).
[13] W. E. Lamb, Phys. Rev. 134, A1429 (1964).
[14] Murray Sargent III, Marlan O’Scully and Willis E. Lamb, Laser Physics (Addison Wesley Publishing Company, 1978).
[15] D. S. Wiersma and S. Cavalieri, Nature 414, 708 (2001).
[16] M. Leonetti and C. Conti, J. Opt. Soc. Am. 27, 1446 (2010).
[17] P. Meystre and M. Sargent III, Elements of Quantum Optics (Springer, 1998).
[18] More specifically, |!j � !k| < �!, for each j, k = 1, . . . , N , where �! is the line-width of the intensity spectrum. Indeed, in

most of RLs, it is not necessary that the resonant ML condition for having four modes interact is satisfied exactly [17].

The*saturable*absorber*induces*self%star0ng*synchronous*oscilla0ons*
of*modes*in*the*cavity:*mode%locking*%>*fast*pulses*
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HA*Haus,**
Mode1Locking((
of(Lasers,*IEEE*
*J.*Quantum**
Electron.,*2000*
*

Ultrafast*mul0mode**
laser*

Mode locking/Phase locking
takes place above the lasing optical power threshold.

Related to a non-linear frequency matching condition  
occurring in the saturable absorber:
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Random laser

A Laser with nonresonant scatterer
Ambartsumyan, Basov, Kryukov, Lethokov  (1966)

“Scatterer-mirror”, strong mode interaction due to scattering in different 
directions: there is coherent feedback but not on a narrow frequency 
interval -> “nonresonant”.

ACTIVE MEDIUM

M
IR

RO
R

SCATTERER

Ambartsumyan, Basov, Kryukov, Lethokov,  
IEEE Journal of Quantum Electronics 2, 442 - 446 (1966)
JETP 24, 481-485 (1967) 
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Generation of Light by a Scattering Medium with 
Negative Resonance Absorption

Letokhov (1968)

“Photonic bomb”

When photon path length is larger than amplification length: 
photon multiplication

1990’sLetokhov, JETP 24, 835-840 (1966)

Random laser
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Gain prevails over loss:
standing modes 

Population inversion 
by external power pumping

Multiple scattering 
of photons

Light Amplification by 
Stimulated Emission Radiation

Random laser

H. Cao, Waves in Random Media 
and Complex Media 13, R1–R39 (2003)

D. S. Wiersma, Nature Physics 4, 359 (2008)

J. Andreasen et al. 
Adv. Optics and Photonics 3, 88–127 (2011)

 
A. S. Gomes et al. Progress in Quantum Electronics 78, 100343 (2021)
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H. Cao et al., Appl. Phys. Lett. 73, 3656 (1998) 
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ZnO film 
H. Cao et al.,  
Appl. Phys. Lett. 73, 3656 (1998) 

Changing the pumping power 
resonances move

 Random laser emission 
spectrum at high pumping
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GaAs powder 
F Antenucci et al., 
PRL 126, 173901 (2021) 

T5OCx 
N Ghofraniha et al., 
Nat. Commun. 6,  6058 (2015)

T5OCx = thienyl-S,S-dioxide quinquethiophene

(In some random lasers) changing the pumping power the resonances move. 
What happens at the emission after different shots at the same pumping power 

(aka at each realization of the same random laser)?

Sometimes resonances change a lot Sometimes they just oscillate a bit

 Random laser emission 
spectrum at high pumping
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Many kinds of random matrices for random lasers:
•Photonics glass [Galisteo-Lo ṕez et al. (2011)]
•Nanoparticles powders (TiO2, ZnO, GaN, GaAs) 
•Porous media, [El-Dardiry et al., (2010)]
•Plasmonic waveguides [Zhai et al. (2011)]
•Quantum dots [Chen et al. (2011)]
•Disordered fibers [de Matos et al. (2007); Turitsyn et al. (2010)], 
•Polymeric micro channels [Bhaktha et al. (2012)], 
•Micro droplets [Tiwari et al. (2012)], 
•Granular beads [Folli et al. (2013)], 
•Paper [Viola et al. (2013); Ghofraniha et al. (2013)] 
•Bio inspired materials [Wang et al. (2014)] 
•Organic semiconductors*, used for LEDs and as gain in lasers, among which: 

–Organic conjugated polymers,  PPV, MEH-PPV, DOO- PPV, PF  [Moses (1992); Hide et al. 
(1996); Tessler et al. (1996); Holzer et al. (1996); Frolov et al. (1996); Polson and Vardeny 
(2005); Tulek and Vardeny (2010)]; 
–Solutions of laser dyes (rhodamine 6G) with nanoparticles (TiO2, ZnO, GaN) [Cao et al. (2003); 

Wu et al. (2006); Polson and Vardeny (2005); Mujumdar et al. (2004)]; 
–Organic-inorganic nanocomposites [Anglos et al. (2004)]; 
–Organic nanofibers [Quochi et al. (2004, 2006); Andreev et al. (2006)]; 
–Thiophene-based oligomers [Barbarella et al. (2005, 1999); Anni et al. (2004); Pisignano et al. 

(2002); Ghofraniha et al. (2013a)]. 

3
Many random 
laser materials

PMMA

ZnO

EL-DARDIRY, MOSK, MUSKENS, AND LAGENDIJK PHYSICAL REVIEW A 81, 043830 (2010)

1 µm

(a)

20 µm

(b)

sapphire window

dye
solution

GaP wafer porous
GaP

(c)

FIG. 1. (a) Top SEM image of a porous GaP sample. (b) A slightly
tilted side view of a porous GaP sample. (c) Sample configuration.
A light spring pushes the sample onto a sapphire window.

A. Sample fabrication and configuration

Random laser samples were made by infiltrating strongly
scattering porous GaP with an acidic solution of 20 mM
rhodamine 640 perchlorate in methanol (minimal gain length
6 µm, absorption length 11 µm, quantum efficiency >90%).
The dye solution was put in an ultrasonic bath for 30 min to
ensure the dye was completely dissolved.

The porous GaP samples were fabricated by electrochemi-
cally etching a 9 × 9-mm piece of a 0.5-mm-thick crystalline
GaP wafer [MTI corporation, carrier concentration = 2–8 ×
1017 cm−3, n-type, S-doped, (100) orientation] in a 0.5 M
aqueous solution of H2SO4 under dark conditions. In general,
the size of the pores, the pore density, and the shape of the
pores depend on the dopant density, the potential at which
the sample is etched, and the electrolyte used [20]. A highly
reflective top layer is formed during the etching process. To
remove this top layer, we used an intermediate etching step
at a high potential lying in the regime of passivation [11].
After fabrication, the samples were cleaved and inspected
with a scanning electron microscope (SEM). Figures 1(a)
and 1(b) show two SEM images of one the porous GaP
samples used in our experiments. From a two-dimensional
autocorrelation analysis of the top SEM image, we find the
typical correlation length at the surface of the sample to be
100 ± 50 nm.

The transport mean free path of the porous GaP samples in
air was determined by an enhanced backscattering experiment
[21,22]. Infiltration of the porous structure with the dye
solution slightly increases the transport mean free path, due
to a lower refractive index contrast. After correcting for
this lower refractive index contrast [23], we determined the
transport mean free path in the two random laser samples
used, to be ! = 0.5 ± 0.1 µm and ! = 1.4 ± 0.1 µm at
λ = 632.8 nm. Since the disorder in porous GaP is quenched
(that is, the position of the scatterers does not change in time),
the samples are well suited for static speckle and random laser
experiments.

For the experiments, the samples were placed in a sample
holder which was filled with the 20 mM dye solution [see
Fig. 1(c)]. A spring was used to press the porous GaP
sample against a 3-mm-thick sapphire window. Both pumping
and collection of the random laser emission was done via
this sapphire window. The holder was mounted onto two
translation stages to allow for selecting different areas on the
sample manually.

pinhole

sample

objective

steering
mirror

pump source

beam splitter

color filter

grating
spectrograph

EMCCD
camera

OPO

neutral density filter

CCD camera

FIG. 2. (Color) Schematic overview of the experimental appara-
tus. The dashed line represents a flip mirror.

B. Excitation and detection

Figure 2 shows a schematic overview of the experimental
setup. The dye molecules in the random laser sample were
excited by 5-ns-long optical pulses, generated by an optical
parametric oscillator (Opolette 355-II, Opotek) with a repeti-
tion rate of 20 Hz. The wavelength of the pulses was selected
in a range between 555 and 565 nm at an energy below
the indirect band gap of GaP (548 nm) in order to prevent
damage due to absorption. The pump fluence incident on the
sample was controlled by means of a tunable reflective neutral
density filter. The pump light was focused onto the sample
by a long-working-distance microscope objective. The size of
the pump spot was controlled by moving the sample out of
the focal plane using a translation stage. To determine the size
of the diffusive spot profile, the surface of the sample was
imaged onto a CCD camera (Mightex). This CCD camera was
put on a translation stage to ensure the image was in focus
for all positions of the sample. The spatial correspondence
between the image on the CCD camera and the actual
distances in the sample plane was calibrated using a calibration
pattern.

Light emitted by the random laser was collected using the
same microscope objective and filtered by a 567-nm-long
pass filter (Semrock). To enable two-dimensional spatial
mapping of the random laser emission at the sample surface,
we introduced a spatially and spectrally selective detection
scheme as shown by the red shaded region in Fig. 2. This
detection path consisted of a bidirectional steering mirror
(FSM-300, Newport), two achromatic lenses (f = 100 mm),
and a pinhole (20 µm). Two 200-mm relay lenses placed before
the steering mirror prevented the beam from walking in the
detection path. The scanning experiments were done with a
0.55 NA microscope objective (CFI LU Plan Epi ELWD 50×,
Nikon). The spatial resolution was 750 ± 50 nm. All other
experiments were done with a 0.25 NA microscope objective
(Leitz). After passing the detection path, the light was detected
using a spectrograph (Oriel MS-257, resolution 0.5 nm) and
an electron-multiplying CCD (EMCCD) camera (C9100-02,
Hamamatsu).

043830-2

GaP

solution of PDMS and Ag NWs ink, and then the plasmonic random laser on the optical fiber 
facet was fabricated after the cross-linking polymerization and drying processes. 

Figure 1 shows the schematic and close-up view of the plasmonic random laser on the 
optical fiber facet. The PDMS layer forms a hemisphere coating on the optical fiber facet. 
The PDMS film is about 200 nm thick on the top of the hemisphere. The PDMS film doped 
with the Ag NWs and R6G is thick enough to provide the waveguiding plasmonic gain 
channel. The pump laser irradiates from the left and propagates in the optical fiber. Then the 
random laser emits to the right direction. 

 
Fig. 1. (a) Schematic of a plasmonic random laser on the optical fiber facet. (b) Optical 
micrograph of the front view of the random laser on the optical fiber facet. (c) Optical 
micrograph of the side view of the random laser on the optical fiber facet. The scale bars 
represent 200 nm. 

Figure 2 shows the optical micrograph, SEM images of the plasmonic random laser on the 
optical fiber facet. The mean diameter and mean length of Ag NWs are about 70 nm and 10 
μm, respectively. In Fig. 2(a), parts of the Ag NWs are obscure under the current depth of 
focus. The Ag NWs are immersed in the PDMS hemisphere and many ends of the Ag NWs 
stretch out in Fig. 2(b). And as shown in the Fig. 2 (c), an Ag NW embedded in the section of 
PDMS layer. 

 
Fig. 2. (a) The optical micrograph of Ag NWs embedded in the PDMS film. The scale bar is 
50 μm. (b) The SEM image of the side view of the random laser on the optical fiber facet. The 
scale bar indicates 500 μm. (c) Ag NW SEM micrograph on a section of the plasmonic random 
laser. The scale bar denotes 5 μm. 

Figure 3 shows the extinction of Ag NWs, the photoluminescence spectra of the R6G, Ag 
NWs and R6G doped in PDMS, respectively. The extinction and photoluminescence spectra 
were measured using a spectrometer (Maya 2000 Pro, Ocean Optics). Generally, in order to 
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PDMS 
+ Rhod.

2. Sample preparation 
The sample was prepared as follows. Micron-scale grooves (width: 40-120 μm and height: 
30-60 μm) were written into a 500-μm-thick glass substrate by manually pressing and 
translating a diamond tip on the surface, as shown in Figs. 1(a) and 1(b). Several parallel 
trenches were fabricated in this way. Red-emitting core-shell CdSe/ZnS CQDs (Evident 
Technology) having a 5-nm mean diameter were then deposited from toluene solution, at a 
concentration of 5 mg/ml, onto the substrate by spin-coating at a low speed (300 rpm for 120 
s) to allow more CQDs to be trapped. The inside surfaces of the micron-scale trenches are 
quite rough [Figs. 1(a) and 1(b)]. The configuration was used here to trap the CQDs inside the 
groove during the formation of the film [17] and thus to increase the CQD density above 
levels enabling light amplification [10,11]. Figures 1(c) and 1(d) show micrograph pictures 
under UV-light illumination of the final sample, i.e. after CQDs deposition. It clearly 
illustrates the fact that CQDs are mainly concentrated into the grooves [Fig. 1(c)], which 
serve as an assembly template. Finally, the trenches‟ roughness is also intended to provide 
multiple scattering, an essential process to trigger random laser oscillation. To a certain extent 
the sample can be considered as a series of large-area (about 80 μm × 40 μm) scattering 
optical waveguides made of a CQD layer deposited inside rough glass trenches. 

 

Fig. 1. (a-b) Scanning electron microscope (SEM) images (with various magnifications) of the 
micron-scale groove written into the glass substrate, showing roughness that is helpful for 
enhancing light multiple scattering and (c-d) optical micrographs of CdSe/ZnS core-shell 
quantum dots deposited in the glass groove under illumination of a handheld UV torch 
(wavelength: 365-400 nm). 

 

Fig. 2. Schematic diagram of laser pump set-up and (inset) relationship of pump stripe and the 
groove containing CQDs. 

3. Optical pumping experiment 
The set-up for the measurements is shown in Fig. 2. For the random laser experiments, the 
CQDs sample was photo-pumped by a frequency-tripled Q-switched Nd:YAG laser system 
yielding 5-ns pump pulses at an excitation wavelength of 355 nm and a repetition rate of 10 
Hz. A cylindrical lens was aligned to shape the pump beam as a stripe with a full width at half 
maximum (FWHM) of 0.05 × 3.0 mm2. The pump beam was incident on the sample vertically 
to the substrate plane and the pump fluence could be adjusted through a combination of a 
half-waveplate-polarizing beam splitter and a neutral density filter. The laser pump stripe was 
parallel to the glass grooves (inset of Fig. 2) and, given its size, only one groove was excited 
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CdSe/ZnS 
CQD 

*Organic random lasers in Organic lasers, Viola et al. 2018

Many more since 2018…..
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Outline
• Standard and random lasers 
• Statistical physics approach to laser physics  

   Theory for ultrafast mode-locked multimode lasers  
   (order, closed cavity) 
   Theory for random lasers: a mode-locked spin-glass theory    
(disorder, open cavity)

• The narrow-band solution, phase diagrams, replica symmetry 
breaking, a new overlap: intensity fluctuation overlap  

• Intermezzo: the experimental measurement of the Parisi 
distribution of overlaps 

• In between theory and experiment: a mode-locking model  
   Monte Carlo dynamics simulation with exchange Monte Carlo, 
   GPU parallel computing 

• Power distribution among modes in the glassy light regime: 
condensation vs equipartition at high pumping 

• Outlook (work in progress) 
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Modeling multimode lasing with statistical mechanics

1) Electromagnetic field quantum dynamics can be  
mapped onto classical stochastic dynamics 
Hackenbroich, Viviescas, Haken PRL, PRA 2003, 
Antenucci, Crisanti, LL PRA 2015, Antenucci, Springer 2016.

2) Under stationarity conditions the system can be 
considered as if at equilibrium, coupled to an effective 
“thermal” reservoire 
Ordered lasers: Gordon, Fisher PRL 2002, Opt. Commun. 2003;  
Gat, Gordon, Fisher, PRE 2004; Weill et al PRL 2005;  
Antenucci, Ibanez Berganza, LL PRA, PRB 2015; Marruzzo, LL PRB 2015.
Random lasers (quenched homogeneous amplitudes — phase only): 
Angelani et al. PRL, PRB 2006; LL et al. PRL 2009; Conti, LL PRB 2011; 
Random lasers: Antenucci, Conti, Crisanti, LL PRL 2015; Antenucci, Crisanti, LL SciRep 2015; 
Marruzzo, LL  PRB 2016; Antenucci et al. Phil. Mag. 2016; Antenucci, Springer 2016.

• Statistical physics approach  
to laser physics
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Modeling multimode lasing with statistical mechanics

1) Electromagnetic field quantum dynamics can be  
mapped onto classical stochastic dynamics 
Hackenbroich, Viviescas, Haken PRL, PRA 2003, 
Antenucci, Crisanti, LL PRA 2015, Antenucci, Springer 2016.

2) Under stationarity conditions the system can be 
considered as if at equilibrium, coupled to an effective 
“thermal” reservoire 
Ordered lasers: Gordon, Fisher PRL 2002, Opt. Commun. 2003;  
Gat, Gordon, Fisher, PRE 2004; Weill et al PRL 2005;  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Random lasers (quenched homogeneous amplitudes — phase only): 
Angelani et al. PRL, PRB 2006; LL et al. PRL 2009; Conti, LL PRB 2011; 
Random lasers: Antenucci, Conti, Crisanti, LL PRL 2015; Antenucci, Crisanti, LL SciRep 2015; 
Marruzzo, LL  PRB 2016; Antenucci et al. Phil. Mag. 2016; Antenucci, Springer 2016.
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RADIATION MATTER

Jaynes-Cummings quantum stochastic dynamics
for light-matter interaction

Downgrading operators to complex numbers we obtain a classical 
description of the mode amplitudes stochastic dynamics 
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Random laser stochastic differential equations 
for the complex amplitudes (the phasors)

2

I↵(k) ⌘
acquisitionX

t

I↵(!k, t)

k = 1, . . . , N

↵ = 1, . . . ,Nshots

I(k) ⌘
1

Nshots

NshotsX

↵=1

I↵(k)

�(↵)
k ⌘

I↵(k)� I(k)r
PN

k=1

⇣
I↵(k)� I(k)

⌘2

C↵� =
1

N

NX

k=1

�(↵)
k �(�)

k = Q
exp
↵�

C↵↵ = 1

P(C)

n = 1, . . . , N

Potential solution to the  
Fokker-Planck equation

T is related to spontaneous emission, i.e., to the real temperature of the system

Boltzmann-Gibbs like distribution of the amplitudes’ configurations, 
at some effective temperature

Ordered lasers:  
Gordon, Fisher PRL 89, 103901 (2002); Opt. Commun. 223, 151 (2003); Gat, Gordon, Fisher, PRE 70, 046108 (2004); 
Random lasers, quenched homogeneous amplitude approx:  
L Angelani et al. PRL 96, 065702 (2006); PRB 74, 104207 (2006), LL et al. PRL 102, 083901 (2009), Conti, LL PRB 83, 134204  (2011) 
Random lasers, phasors:  
F Antenucci, C Conti, A Crisanti, LL, PRL 114, 043901 (2015);  F Antenucci, A Crisanti, LL, PRA 91, 053816 (2015), F Antenucci et al  Phil. 
Mag. 96, 704-731 (2016), F. Antenucci, Springer 2016
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Light%mode*complex*amplitudes*
stochas0c*dynamics*

More*in*general*the*dynamics*of*the*amplified*localized*modes*
created*by*s0mulated*emission*in*presence*of*spontaneuous*
emission*turns*out*to*be*given*by*the*Langevin*equa0on*

NOTICE:*
the*more*the*cavity*is*open*the*less*is*possible*to*approximate**
both*stochas0c*noise*and*linear*interac0on*by*diagonal*matrices*
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�

Īk ⌘
1

NR

NRX

↵=1

I
↵
k

ˆLi

ˆJij

= 0 ˆLi

ˆhi

= 0

{J inf
ij

, hinf
i

}jœ\i = argmax
{Ji\i,hi}

#
Li({Ji\i, hi})

$

Lp-norm regularizer where a Lp-norm of K parameters x is

p

Ú
a

b

3 ALTRE FORMULE

‡≠(r) © |bÍÈa|

‡+(r) © |aÍÈb|

‡z(r) © |aÍÈa| ≠ |bÍÈb|
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Potential solution to the  
Fokker-Planck equation

T is related to spontaneous emission, i.e., to the real temperature of the system

Boltzmann-Gibbs like distribution of the amplitudes’ configurations, 
at some effective temperature

Ordered lasers:  
Gordon, Fisher PRL 89, 103901 (2002); Opt. Commun. 223, 151 (2003); Gat, Gordon, Fisher, PRE 70, 046108 (2004); 
Random lasers, quenched homogeneous amplitude approx:  
L Angelani et al. PRL 96, 065702 (2006); PRB 74, 104207 (2006), LL et al. PRL 102, 083901 (2009), Conti, LL PRB 83, 134204  (2011) 
Random lasers, phasors:  
F Antenucci, C Conti, A Crisanti, LL, PRL 114, 043901 (2015);  F Antenucci, A Crisanti, LL, PRA 91, 053816 (2015), F Antenucci et al  Phil. 
Mag. 96, 704-731 (2016), F. Antenucci, Springer 2016
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They are the complex amplitudes in the 
slow amplitude e.m. field expansion in normal modes

14

|ak| = O(1) 8k

|ak⇢⇤| = O(
p
N)

���ak*⇤
��� = 0 (39)
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P ⌘ ✏
p
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Z

drE↵1
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(r)�(1)

↵1↵2
(r)E↵2

n2
(r) (40)

SV (!) =
2kB
⇡

Te<[Z(!)]

<[Z(!)] ⇠ !2L2C 00(!) / !✏00(!)

T < Tg ⌧ Te

T ⌧ Te

P2

Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (41)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.

ȧn(t) = �ı
@H
@a⇤n

� µ an(t) + ⌘n(t) (42)
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Ik = |ak|2,�k = arg(ak)
{Ik,�k,!k}
I,�,!
J

normal 
mode

mode 
frequencyslow amplitude 

complex coefficient
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Laser stationary regime and equilibrium statistical mechanics
Lasers are not at equilibrium: energy is pumped to maintain the population 

inversion and in open cavities energy is lost by radiation.
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Because of gain saturation
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Laser stationary regime and equilibrium statistical mechanics
Lasers are not at equilibrium: energy is pumped to maintain the population 

inversion and in open cavities energy is lost by radiation.
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gain is the amplification 
factor of the output to 
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as the energy shared by the modes (number of photons emitted) increases the gain is 
depleted. The energy of modes consequently  decreases, then gain increases...
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rd

H = ≠

Nÿ

n=1
g(0)

n
|an|

2
≠ J

ÿ

Ên1 ≠Ên2 +Ên3 ≠Ên4 =0
an1aú

n2an3aú

n4 + c.c.

E(t) =
⁄

t+Tfast

t

d· |a(t, ·)|2 =
⁄

t+Tfast

t

d·
ÿ

n,m

eı(Ên≠Êm)· a(t, Ên)aú(t, Êm) Ã

ÿ

n,m

”(Ên ≠ Êm)a(t, Ên)aú(t, Êm) =
ÿ

n

|a(t, Ên)|2

9

g(E) = g0
1 + E

Esat

ƒ g0 ≠
g0E

Esat
E π Esat

I(Ê) = |a(Ê)|2

H = ≠

ÿ

n1,n2

Jn1n2an1aú

n2 ≠

ÿ

Ên1 ≠Ên2 +Ên3 ≠Ên4 =0
Jn̨4an1aú

n2an3aú

n4 + c.c.

Jn ≥ g(Ên) ƒ g(Ê0) = g0

ÿ

n1,n2

Jn1n2an1aú

n2 = g0E +
ÿ

n1 ”=n2

Jn1n2an1aú

n2

p = 2, 4

Ên ƒ Ê0 ’n

E =
ÿ

n

|an(Ên)|2 = N‘

g(E) | Ė = 0

rd

H = ≠

Nÿ

n=1
g(0)

n
|an|

2
≠ J

ÿ

Ên1 ≠Ên2 +Ên3 ≠Ên4 =0
an1aú

n2an3aú

n4 + c.c.

E(t) =
⁄

t+Tfast

t

d· |a(t, ·)|2 =
⁄

t+Tfast

t

d·
ÿ

n,m

eı(Ên≠Êm)· a(t, Ên)aú(t, Êm) Ã

ÿ

n,m

”(Ên ≠ Êm)a(t, Ên)aú(t, Êm) =
ÿ

n

|a(t, Ên)|2

9

g(E) = g0
1 + E

Esat

ƒ g0 ≠
g0E

Esat
E π Esat

I(Ê) = |a(Ê)|2

H = ≠

ÿ

n1,n2

Jn1n2an1aú

n2 ≠

ÿ

Ên1 ≠Ên2 +Ên3 ≠Ên4 =0
Jn̨4an1aú

n2an3aú

n4 + c.c.

Jn ≥ g(Ên) ƒ g(Ê0) = g0

ÿ

n1,n2

Jn1n2an1aú

n2 = g0E +
ÿ

n1 ”=n2

Jn1n2an1aú

n2

p = 2, 4

Ên ƒ Ê0 ’n

E =
ÿ

n

|an(Ên)|2 = N‘

g(E) | Ė = 0
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Gain saturation yields a global constraint 
on the overall intensity of all phasors
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Notes for the derivation of the RL Hamiltonian with di↵erent approaches: (i) optical cycle average
of the electromangetic energy; (ii) Quantum field theory for open optical cavities; (iii) multiscale
expansion for small nonlinear polarization; (iv) comparison with Haus master equation.

The complex amplitude model. — For a closed cavity, localized modes form a complete set and the electro-magnetic
field E(r, t) can be expanded in terms of normal modes En(r) with time-dependent complex amplitudes an(t)[1]. In
open cavities a continuous spectrum of radiation modes is also present. The contributions of radiative and localized
modes can be separated by a suitable projection onto two orthogonal subspaces [2, 3]. This leads to an e↵ective
theory on the subspace of localized modes in which they exchange a linear o↵-diagonal e↵ective damping coupling.
Radiation losses and gain are accounted for by additional linear terms (diagonal when the net gain is homogeneous),
and the presence of a thermal bath is represented by the fluctuations due to the spontaneous emission. Nonlinear
couplings arise from gain saturation and from the optical Kerr e↵ect. At equilibrium with the pump mechanism, the
complex amplitudes an(t) are linked by a constraint given by the total optical intensity pumped into the system

EP = ✏N =
NX

m=1

|am|
2

where N is the number of modes and ✏ the average energy per mode. The general Hamiltonian, derived by di↵erent
approaches [1, 4, 5], reads

H = �<

"
1

2

1,NX

n1,n2

J~n2an1a
⇤
n2

+
1

4!

nk=1,NX

!n1 + !n3

= !n2 + !n4

J~n4an1a
⇤
n2
an3a

⇤
n4

#

where J~np = Jn1...np and the second sum ranges over all distinct 4-ples for which the so-called ML condition holds:
!n1 � !n2 + !n3 � !n4 = 0. The coupling coe�cient J~n4 represents the spatial overlap of the electromagnetic fields
modulated by non-linear �(3)({!}; r) susceptibility:

J~n4 =
ı

2

4Y

j=1

p
!nj

Z

V
d
3
r �
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~↵4

({!~n4}; r) (1)

⇥ E
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n1

(r)E↵2
n2

(r)E↵3
n3

(r)E↵4
n4

(r)

with ↵j = x, y, z, and ~n4 = {n1, n2, n3, n4}. The linear coe�cient J~n2 yields di↵erent contributions depending on
medium randomness and cavity leakage:

J~n2 = Jn1�n1n2 + J
rad
~n2

+ J
inh
~n2

(2)

J
inh
~n2

=
ı

2

p
!n1!n2

Z

V
d
3
r �
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~↵2

(r) E↵1
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(r)E↵2
n2

(r) (3)

The linear diagonal terms of J~n2 depend on gain and loss profiles for the passive modes. A possible non-uniform
distribution of the gain - and the related inhomogeneous linear susceptibility �

(1)(r) - yields the spatial overlap of
localized eigenmodes, i. e., J inh, Eq. (3). Besides, in the open cavity scenario, the linear o↵-diagonal coupling terms
also account for the presence of a continuous spectrum, and they correspond to the e↵ective damping contribution
J
rad obtained integrating out radiation modes [2, 3]. Taking the purely nonlinear interaction of a discrete set of modes

corresponds to the strong cavity limit, J rad = 0, with homogeneous gain (because of orthogonality of {En}’s it is
J
inh = 0). Only linear diagonal terms remain in this limit.
We build a mean-field theory in which the system is fully connected, that is, the network of interacting modes is a

complete graph. This amounts to adopt a narrow bandwidth approximation for the gain profile in which !n ' !0, for
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Complex Langevin dynamics

ȧn = �ı
@H

@a⇤n
+ ⌘n(t); h⌘n(t)i = 0; h⌘n(t)⌘m(s)i = 2T �(t� s)�nm ' 2T �(t� s)�nm (26)

mode - locking

�(!) = �0 + �
0
! +O(!2) (27)

Haus master equation

ȧn = (gm � `m + ıDm)an + (� � ı�)
X
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⇤
kal + ⌘n (28)

ȧn = �ı
@H

@a⇤n
+ ⌘n = ıJnan + ıJ4

X
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⇤
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“Tlaser” =
T
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(30)
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each n = 1, . . . , N [18]. This is the case in the so-called dispersive RLs with very low finesse and a sensitive narrowing
of the bandwidth above threshold, in which many modes oscillate in a relative small bandwidth and are so densely
packed in frequency that their linewidths overlap. Consistently with this approximation we take a constant e↵ective
net gain profile in the bandwidth: Jn = g(!n) ' g(!0) = g0, implying

P
n1,n2

J~n2an1an2 = g0EP +
P

n1 6=n2
J~n2an1an2 .

The open cavity model in the narrow bandwidth approximation can be viewed as an extension of the so-called
spherical 2+p model [6–10] yielding a far reacher variety of physical scenarios.

The o↵-diagonal linear terms and the non-linear terms may, in general, be disordered because modes display di↵erent
degree and shape of localizations [11, 12]. The constituents of the integrals in Eq. (1,3) are very di�cult to calculate
from first principles. The only specific form of the non-linear susceptibility has been computed by Lamb [13, 14]
for few-modes standard lasers and no analogue study for RLs has been performed so far, to our knowledge. The
overlap integrals in a disordered system can be regarded as a sum over many random variables. Correspondingly, the
probability distribution of the couplings J~np can be assumed to be Gaussian:

P (J~np) =

s
Np�1

2⇡J2
p

exp

8
<

:�
N

p�1

2J2
p

"
J~np �

J
(p)
0

Np�1

#2
9
=

; (4)

with p = 2, 4. To simplify the computation and its presentation we will take real-valued interaction couplings. This
amounts, e. g., to neglect the e↵ect of group velocity in the diagonal linear part and the Kerr lens e↵ect in the
nonlinear term, but does not change the generality of the qualitative picture. This is the most general Hamiltonian
model for laser systems that one can consider. Indeed, also adding further non-linear terms (J~np with p = 3, 5, 6, . . .)
does not alter the qualitative behavior at the transition from continuous wave to (standard or random) lasing regimes.
The external parameters — In order to yield a comprehensive description, we introduce the degrees of non-linearity
↵0,↵ - varying in the interval [0, 1] - and suitable interaction energy scales J0, J , for the ordered and disordered
component, respectively:

J
(4)
0 = ↵0J0; ↵0 =


J(2)
0

J(4)
0

+ 1

��1

; J0 = J
(2)
0 + J

(4)
0 (5)

J4 = ↵J ; ↵ =
h
J2
J4

+ 1
i�1

; J = J2 + J4 (6)

The degree of disorder of a given system with coupling parameter scales J, J0 is, then, defined as RJ = J/J0.
The average energy per mode ✏ is related to the so-called pumping rate P induced by the pumping laser source in

the RL, or proportional to the optical power in the cavity for the standard laser. In the present work it is defined as
P ⌘ ✏

p
J0/kBT = ✏

p
�J0 where T is the heat-bath temperature. It encodes the experimental evidence that decreasing

temperature [15] or increasing the total power [16] yields qualitatively similar behaviors. The factor J0 is a material
dependent parameter function of the angular frequency !0 of the peak of the average spectrum, cf. Eq. (1), and it is
volume independent.

To summarize, the parameters of interest are:

Optical power per mode ✏

Heat-bath thermal energy kBT = 1/�

Cumulative coupling average J0 = J
(2)
0 + J

(4)
0

Cumulative mean square disp. J = J2 + J4

Pumping rate P = ✏
p
�J0

Disorder degree RJ = J/J0

Non-linearity degree (ordered) ↵0 = J
(4)
0 /J0

Non-linearity degree (disordered) ↵ = J4/J .

I. HAMILTONIAN DERIVATION I

Electromagnetic energy

Eem =

Z
E

⇤(r, t) ·D(r, t) dV (7)

Electric displacement field

D(r) = ✏0✏r(r)E(r) + Pnl(r) (8)
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Notes for the derivation of the RL Hamiltonian with di↵erent approaches: (i) optical cycle average
of the electromangetic energy; (ii) Quantum field theory for open optical cavities; (iii) multiscale
expansion for small nonlinear polarization; (iv) comparison with Haus master equation.

The complex amplitude model. — For a closed cavity, localized modes form a complete set and the electro-magnetic
field E(r, t) can be expanded in terms of normal modes En(r) with time-dependent complex amplitudes an(t)[1]. In
open cavities a continuous spectrum of radiation modes is also present. The contributions of radiative and localized
modes can be separated by a suitable projection onto two orthogonal subspaces [2, 3]. This leads to an e↵ective
theory on the subspace of localized modes in which they exchange a linear o↵-diagonal e↵ective damping coupling.
Radiation losses and gain are accounted for by additional linear terms (diagonal when the net gain is homogeneous),
and the presence of a thermal bath is represented by the fluctuations due to the spontaneous emission. Nonlinear
couplings arise from gain saturation and from the optical Kerr e↵ect. At equilibrium with the pump mechanism, the
complex amplitudes an(t) are linked by a constraint given by the total optical intensity pumped into the system
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where N is the number of modes and ✏ the average energy per mode. The general Hamiltonian, derived by di↵erent
approaches [1, 4, 5], reads
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where J~np = Jn1...np and the second sum ranges over all distinct 4-ples for which the so-called ML condition holds:
!n1 � !n2 + !n3 � !n4 = 0. The coupling coe�cient J~n4 represents the spatial overlap of the electromagnetic fields
modulated by non-linear �(3)({!}; r) susceptibility:
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with ↵j = x, y, z, and ~n4 = {n1, n2, n3, n4}. The linear coe�cient J~n2 yields di↵erent contributions depending on
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The linear diagonal terms of J~n2 depend on gain and loss profiles for the passive modes. A possible non-uniform
distribution of the gain - and the related inhomogeneous linear susceptibility �

(1)(r) - yields the spatial overlap of
localized eigenmodes, i. e., J inh, Eq. (3). Besides, in the open cavity scenario, the linear o↵-diagonal coupling terms
also account for the presence of a continuous spectrum, and they correspond to the e↵ective damping contribution
J
rad obtained integrating out radiation modes [2, 3]. Taking the purely nonlinear interaction of a discrete set of modes

corresponds to the strong cavity limit, J rad = 0, with homogeneous gain (because of orthogonality of {En}’s it is
J
inh = 0). Only linear diagonal terms remain in this limit.
We build a mean-field theory in which the system is fully connected, that is, the network of interacting modes is a

complete graph. This amounts to adopt a narrow bandwidth approximation for the gain profile in which !n ' !0, for
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each n = 1, . . . , N [18]. This is the case in the so-called dispersive RLs with very low finesse and a sensitive narrowing
of the bandwidth above threshold, in which many modes oscillate in a relative small bandwidth and are so densely
packed in frequency that their linewidths overlap. Consistently with this approximation we take a constant e↵ective
net gain profile in the bandwidth: Jn = g(!n) ' g(!0) = g0, implying

P
n1,n2

J~n2an1an2 = g0EP +
P

n1 6=n2
J~n2an1an2 .

The open cavity model in the narrow bandwidth approximation can be viewed as an extension of the so-called
spherical 2+p model [6–10] yielding a far reacher variety of physical scenarios.

The o↵-diagonal linear terms and the non-linear terms may, in general, be disordered because modes display di↵erent
degree and shape of localizations [11, 12]. The constituents of the integrals in Eq. (1,3) are very di�cult to calculate
from first principles. The only specific form of the non-linear susceptibility has been computed by Lamb [13, 14]
for few-modes standard lasers and no analogue study for RLs has been performed so far, to our knowledge. The
overlap integrals in a disordered system can be regarded as a sum over many random variables. Correspondingly, the
probability distribution of the couplings J~np can be assumed to be Gaussian:

P (J~np) =

s
Np�1

2⇡J2
p

exp

8
<

:�
N

p�1

2J2
p

"
J~np �

J
(p)
0

Np�1

#2
9
=

; (4)

with p = 2, 4. To simplify the computation and its presentation we will take real-valued interaction couplings. This
amounts, e. g., to neglect the e↵ect of group velocity in the diagonal linear part and the Kerr lens e↵ect in the
nonlinear term, but does not change the generality of the qualitative picture. This is the most general Hamiltonian
model for laser systems that one can consider. Indeed, also adding further non-linear terms (J~np with p = 3, 5, 6, . . .)
does not alter the qualitative behavior at the transition from continuous wave to (standard or random) lasing regimes.
The external parameters — In order to yield a comprehensive description, we introduce the degrees of non-linearity
↵0,↵ - varying in the interval [0, 1] - and suitable interaction energy scales J0, J , for the ordered and disordered
component, respectively:

J
(4)
0 = ↵0J0; ↵0 =


J(2)
0

J(4)
0

+ 1

��1

; J0 = J
(2)
0 + J

(4)
0 (5)

J4 = ↵J ; ↵ =
h
J2
J4

+ 1
i�1

; J = J2 + J4 (6)

The degree of disorder of a given system with coupling parameter scales J, J0 is, then, defined as RJ = J/J0.
The average energy per mode ✏ is related to the so-called pumping rate P induced by the pumping laser source in

the RL, or proportional to the optical power in the cavity for the standard laser. In the present work it is defined as
P ⌘ ✏

p
J0/kBT = ✏

p
�J0 where T is the heat-bath temperature. It encodes the experimental evidence that decreasing

temperature [15] or increasing the total power [16] yields qualitatively similar behaviors. The factor J0 is a material
dependent parameter function of the angular frequency !0 of the peak of the average spectrum, cf. Eq. (1), and it is
volume independent.

To summarize, the parameters of interest are:

Optical power per mode ✏

Heat-bath thermal energy kBT = 1/�

Cumulative coupling average J0 = J
(2)
0 + J

(4)
0

Cumulative mean square disp. J = J2 + J4

Pumping rate P = ✏
p
�J0

Disorder degree RJ = J/J0

Non-linearity degree (ordered) ↵0 = J
(4)
0 /J0

Non-linearity degree (disordered) ↵ = J4/J .

I. HAMILTONIAN DERIVATION I

Electromagnetic energy

Eem =

Z
E

⇤(r, t) ·D(r, t) dV (7)

Electric displacement field

D(r) = ✏0✏r(r)E(r) + Pnl(r) (8)

No0ce*that*in*Random*Lasers*the*effect*of*lowering*the*T*is*shown*
to*be*experimentally*equivalent*to*raise*the*op0cal*power.**
D.*S.*Wiersma*and*S.*Cavalieri*(Nature*2001,*PRE*2002),**
Light(emission:(A(temperature1tunable(random(laser*
T.*Nakamura,*T.*Takahashi,*and*S.*Adachi*(PRB*2010),*
Temperature(dependence(of(GaAs(random(laser(characteris+cs(
(

¡

|a1|2+|a2|2 = ¡

g(E) = g0
1 + E

Esat

ƒ g0 ≠
g0E

Esat
E π Esat

I(Ê) = |a(Ê)|2

H = ≠

ÿ

n1,n2

Jn1n2an1aú

n2 ≠

ÿ

Ên1 ≠Ên2 +Ên3 ≠Ên4

Jn̨4an1aú

n2an3aú

n4 + c.c.

Jn ≥ g(Ên) ƒ g(Ê0) = g0

ÿ

n1,n2

Jn1n2an1aú

n2 = g0E +
ÿ

n1 ”=n2

Jn1n2an1aú

n2

p = 2, 4

Ên ƒ Ê0 ’n

E =
ÿ

n

|an(Ên)|2 = N‘

g(E) | Ė = 0
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Gain saturation yields a global constraint 
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Random laser stochastic differential equations 
for the complex amplitudes (the phasors)

2

I↵(k) ⌘
acquisitionX

t

I↵(!k, t)

k = 1, . . . , N

↵ = 1, . . . ,Nshots

I(k) ⌘
1

Nshots

NshotsX

↵=1

I↵(k)

�(↵)
k ⌘

I↵(k)� I(k)r
PN

k=1

⇣
I↵(k)� I(k)

⌘2

C↵� =
1

N

NX

k=1

�(↵)
k �(�)

k = Q
exp
↵�

C↵↵ = 1

P(C)

n = 1, . . . , N

2

Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.

ȧn(t) = �ı
@H

@a⇤n
� µ an(t) + ⌘n(t) (2)

Fn[{a}|{J}] ' �ı
@

@a⇤n
H[{a}|{J}]� µ an(t) (3)

ak(!k) = Ak(!k)eı�k(!k)

Ik = |ak|2,�k = arg(ak)
{Ik,�k,!k}

I,�,!
J
Ik(t) = |ak(t)|2

hIk(t)i =
1
T

R t0+T

t0
dt Ik(t)

[? ? ]

H = �
1

2

1,NX

jk

Jjkaja
⇤

k �
1

4!

1,NX

jklm

Jjklmaja
⇤

kala
⇤

m , (4)

where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 = const (5)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)

Gain saturation yields a global constraint 
on the overall intensity of all phasors
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Potential solution to the  
Fokker-Planck equation

Laser*sta0onary*regime*
and*equilibrium*stat.*mech.*
Lasers*are*not*at*equilibrium:*energy*is*pumped*to*mantain*the*

popula0on*inversion*and*in*open*cavi0es*energy*is*lost*by*radia0on.*

As*the*op0cal*power*pumped*into*the*system*is*kept*strictly*constant*

the*obtained*sta0onary*system*can*be*considered*as*in*equilibrium*with*an*effec0ve*
“heat%bath”*at*“temperature”*

Notes on the derivation of the RL Hamiltonian

Luca Leuzzi⇤

IPCF-CNR, UOS Kerberos Roma, Piazzale A. Moro 2, I-00185, Roma, Italy

Notes for the derivation of the RL Hamiltonian with di↵erent approaches: (i) optical cycle average
of the electromangetic energy; (ii) Quantum field theory for open optical cavities; (iii) multiscale
expansion for small nonlinear polarization; (iv) comparison with Haus master equation.

The complex amplitude model. — For a closed cavity, localized modes form a complete set and the electro-magnetic
field E(r, t) can be expanded in terms of normal modes En(r) with time-dependent complex amplitudes an(t)[1]. In
open cavities a continuous spectrum of radiation modes is also present. The contributions of radiative and localized
modes can be separated by a suitable projection onto two orthogonal subspaces [2, 3]. This leads to an e↵ective
theory on the subspace of localized modes in which they exchange a linear o↵-diagonal e↵ective damping coupling.
Radiation losses and gain are accounted for by additional linear terms (diagonal when the net gain is homogeneous),
and the presence of a thermal bath is represented by the fluctuations due to the spontaneous emission. Nonlinear
couplings arise from gain saturation and from the optical Kerr e↵ect. At equilibrium with the pump mechanism, the
complex amplitudes an(t) are linked by a constraint given by the total optical intensity pumped into the system

EP = ✏N =
NX

m=1

|am|
2

where N is the number of modes and ✏ the average energy per mode. The general Hamiltonian, derived by di↵erent
approaches [1, 4, 5], reads

H = �<

"
1

2

1,NX

n1,n2

J~n2an1a
⇤
n2

+
1

4!

nk=1,NX

!n1 + !n3

= !n2 + !n4

J~n4an1a
⇤
n2
an3a

⇤
n4

#

where J~np = Jn1...np and the second sum ranges over all distinct 4-ples for which the so-called ML condition holds:
!n1 � !n2 + !n3 � !n4 = 0. The coupling coe�cient J~n4 represents the spatial overlap of the electromagnetic fields
modulated by non-linear �(3)({!}; r) susceptibility:

J~n4 =
ı

2

4Y

j=1

p
!nj

Z

V
d
3
r �

(3)
~↵4

({!~n4}; r) (1)

⇥ E
↵1
n1

(r)E↵2
n2

(r)E↵3
n3

(r)E↵4
n4

(r)

with ↵j = x, y, z, and ~n4 = {n1, n2, n3, n4}. The linear coe�cient J~n2 yields di↵erent contributions depending on
medium randomness and cavity leakage:

J~n2 = Jn1�n1n2 + J
rad
~n2

+ J
inh
~n2

(2)

J
inh
~n2

=
ı

2

p
!n1!n2

Z

V
d
3
r �

(1)
~↵2

(r) E↵1
n1

(r)E↵2
n2

(r) (3)

The linear diagonal terms of J~n2 depend on gain and loss profiles for the passive modes. A possible non-uniform
distribution of the gain - and the related inhomogeneous linear susceptibility �

(1)(r) - yields the spatial overlap of
localized eigenmodes, i. e., J inh, Eq. (3). Besides, in the open cavity scenario, the linear o↵-diagonal coupling terms
also account for the presence of a continuous spectrum, and they correspond to the e↵ective damping contribution
J
rad obtained integrating out radiation modes [2, 3]. Taking the purely nonlinear interaction of a discrete set of modes

corresponds to the strong cavity limit, J rad = 0, with homogeneous gain (because of orthogonality of {En}’s it is
J
inh = 0). Only linear diagonal terms remain in this limit.
We build a mean-field theory in which the system is fully connected, that is, the network of interacting modes is a

complete graph. This amounts to adopt a narrow bandwidth approximation for the gain profile in which !n ' !0, for
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each n = 1, . . . , N [18]. This is the case in the so-called dispersive RLs with very low finesse and a sensitive narrowing
of the bandwidth above threshold, in which many modes oscillate in a relative small bandwidth and are so densely
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spherical 2+p model [6–10] yielding a far reacher variety of physical scenarios.
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with p = 2, 4. To simplify the computation and its presentation we will take real-valued interaction couplings. This
amounts, e. g., to neglect the e↵ect of group velocity in the diagonal linear part and the Kerr lens e↵ect in the
nonlinear term, but does not change the generality of the qualitative picture. This is the most general Hamiltonian
model for laser systems that one can consider. Indeed, also adding further non-linear terms (J~np with p = 3, 5, 6, . . .)
does not alter the qualitative behavior at the transition from continuous wave to (standard or random) lasing regimes.
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The degree of disorder of a given system with coupling parameter scales J, J0 is, then, defined as RJ = J/J0.
The average energy per mode ✏ is related to the so-called pumping rate P induced by the pumping laser source in

the RL, or proportional to the optical power in the cavity for the standard laser. In the present work it is defined as
P ⌘ ✏
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�J0 where T is the heat-bath temperature. It encodes the experimental evidence that decreasing

temperature [15] or increasing the total power [16] yields qualitatively similar behaviors. The factor J0 is a material
dependent parameter function of the angular frequency !0 of the peak of the average spectrum, cf. Eq. (1), and it is
volume independent.
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ȧn = (gm � `m + ıDm)an + (� � ı�)
X

!j�!k+!l=!n

aja
⇤
kal + ⌘n (28)
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Averaging over fast times only a↵ects the non-diagonal linear term and yields
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If we are in a close cavity with regular mirrors the average h. . .ifast can be defined as the average over an optical
cycle, i.e., over a roundtrip time TR:
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and we are back to the mode-locking standard laser.
If, instead, the cavity is open, as in cavities with leakages and (i) there will be radiative modes, whose frequencies

take values over a continuous dominion, thus the integral above can be a non-zero complex number. More glaringly,
in random media, with inhomogeneous optical susceptibility profiles, also the discrete lasing frequencies will not be
all equispaced. Furthermore, (ii) the “optical cycle” and the “roundtrip time” TR are delicate concepts in absence of
a cavity; they depend on the scatterers structure and on the dimensions of the disorder-induced stochastic resonators
where modes amplify. In these cases, there will be a non-zero non-diagonal contribution to the Hamiltonian.

This is better understood by studying the quantum field theory for open optical cavities as done by Hackenbroich
and Viviescas [3] and degrading from operators to complex numbers the so obtained Langevin equation [2]. From this
approach a further damping linear non-diagonal coupling �n1n2 = J rad

~n2
arises.
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where modes amplify. In these cases, there will be a non-zero non-diagonal contribution to the Hamiltonian.

This is better understood by studying the quantum field theory for open optical cavities as done by Hackenbroich
and Viviescas [3] and degrading from operators to complex numbers the so obtained Langevin equation [2]. From this
approach a further damping linear non-diagonal coupling �n1n2 = J rad

~n2
arises. It consists in separating localized modes

inside the stimulated region and radiative modes by means of projections onto two separate spaces complementary to
each other and completing the whole space. It is then possible to devise a complete basis for all the modes divided
in localized eigenmodes uk(r), with discrete frequencies !k, and radiative eigenmodes vA(!, r) whose frequencies are
distributed on a continuum. The inner modes satisfy the von Neumann boundary condition

n̂ ^ [r^ uk]S = 0 (21)

whereas the outer modes satisfy the Dirichlet boundary conditions

n̂ ^ vA(!)
���
S
= 0 (22)

J rad
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⇤
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Naming J~n2 = J inh
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+ J rad
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we eventually have the Hamiltonian
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⇤
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⇤
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[1] C. Conti and L. Leuzzi, Phys. Rev. B 83, 134204 (2011).
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Averaging over fast times only a↵ects the non-diagonal linear term and yields
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If we are in a close cavity with regular mirrors the average h. . .ifast can be defined as the average over an optical
cycle, i.e., over a roundtrip time TR:

he
ı(!n�!m)t

iopt.cyc. =
1

TR

Z TR

0
dt e

ı(!n�!m)t =
1

TR

Z TR

0
dt e

2⇡
TR

ı(n�m)t = 0 ; n 6= m

and we are back to the mode-locking standard laser.
If, instead, the cavity is open, as in cavities with leakages and (i) there will be radiative modes, whose frequencies

take values over a continuous dominion, thus the integral above can be a non-zero complex number. More glaringly,
in random media, with inhomogeneous optical susceptibility profiles, also the discrete lasing frequencies will not be
all equispaced. Furthermore, (ii) the “optical cycle” and the “roundtrip time” TR are delicate concepts in absence of
a cavity; they depend on the scatterers structure and on the dimensions of the disorder-induced stochastic resonators
where modes amplify. In these cases, there will be a non-zero non-diagonal contribution to the Hamiltonian.

This is better understood by studying the quantum field theory for open optical cavities as done by Hackenbroich
and Viviescas [3] and degrading from operators to complex numbers the so obtained Langevin equation [2]. From this
approach a further damping linear non-diagonal coupling �n1n2 = J

rad
~n2

arises. It consists in separating localized modes
inside the stimulated region and radiative modes by means of projections onto two separate spaces complementary to
each other and completing the whole space. It is then possible to devise a complete basis for all the modes divided
in localized eigenmodes uk(r), with discrete frequencies !k, and radiative eigenmodes vA(!, r) whose frequencies are
distributed on a continuum. The inner modes satisfy the von Neumann boundary condition

n̂ ^ [r^ uk]S = 0 (21)

whereas the outer modes satisfy the Dirichlet boundary conditions

n̂ ^ vA(!)
���
S
= 0 (22)

In a so-called input-output quantum field theory a Hamiltonian can be written in term of creation-annihilation
operators for both inner (ak) and outer (bA) modes:
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Z
E

↵1
n1

(r)E↵2
n2

(r)E↵3
n3

(r)E↵4
n4

(r) �(3)
~↵4

({!~n4}; r) dV

Naming J~n2 = J
inh
~n2

+ J
rad
~n2

we eventually have the Hamiltonian
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Complex Langevin dynamics
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.

ȧn(t) = �ı
@H

@a⇤n
� µ an(t) + ⌘n(t) (2)

Fn[{a}|{J}] ' �ı
@

@a⇤n
H[{a}|{J}]� µ an(t) (3)

ak(!k) = Ak(!k)eı�k(!k)

Ik = |ak|2,�k = arg(ak)
{Ik,�k,!k}

I,�,!
J
Ik(t) = |ak(t)|2

hIk(t)i =
1
T

R t0+T

t0
dt Ik(t)

[? ? ]

H = �
1

2

1,NX

jk

Jjkaja
⇤

k �
1

4!

1,NX

jklm

Jjklmaja
⇤

kala
⇤

m , (4)

where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 (5)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)

Gain saturation
Effective interaction
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In the standard laser case the linear couplings are diagonal and the non-linear ones can be
safely considered as constant: in this case, Dk is the group velocity dispersion coefficient and
� is the self-phase modulation coefficient, responsible for the Kerr effect [40]. In the purely
dissipative limit [34,37], i.e. Dk1k2

⌧ Gk1k2
and �k1k2k3k4

⌧ �k1k2k3k4
, which in standard laser

theory corresponds to neglect the group velocity dispersion and the Kerr effect, the dynamics
of Eq. (2) becomes a potential differential equation

dak1

d t
= � @H[a]
@ ak1

(t)
+⌘k1

(t) ,

with a Hamiltonian function given by

H = �
X

k|FMC(k)

Gk1k2
ak1

ak2
�
X

k|FMC(k)

�k1k2k3k4
ak1

ak2
ak3

ak4
+ c.c. (9)

In principle, the noise is correlated, i.e. h⌘k1
⌘k2
i 6= �k1k2

. However, it can be diagonalized
by changing basis of dynamic variables: the decomposition of resonator modes into a slow
amplitude basis is not unique [57] and one can use this freedom to build a basis in which the
noise has no correlations. The diagonalization of the noise can be done at the cost of having
non-diagonal linear interactions, which is not a real complication in the random laser case,
since linear couplings already have off-diagonal contributions accounting for the openness of
the cavity.

The laser dynamics is brought to stationarity by gain saturation, a phenomenon connected
to the fact that, as the power is kept constant, the emitting atoms periodically decade in lower
states saturating the gain of the laser. In the same way the dynamics induced by the Hamil-
tonian Eq. (9) eventually reaches a stationary regime, when a constraint on the total energy
contained in the system is added. This argument was first proposed for standard multimode
lasers in Refs [37, 56]. In fact, lasers are strongly out of equilibrium: energy is constantly
pumped into the system in order to keep population inversion and stimulated emission, and in
the case of cavityless systems also compensate the leakages. However, a stationary regime can
be described as if the system is at equilibrium with an effective thermal bath, whose effective
temperature (a “photonic” temperature) accounts both for the amount of energy E = ✏N stored
into the system because of the external pumping and for the spontaneous emission rate. The
latter is proportional to the kinetic energy of the atoms, e. g., to the heat bath temperature T .
Eventually, the external parameter driving the lasing transition turns out to be [33,34,49]

Tphotonic =
T
✏2

. (10)

One can also introduce the pumping rate P [41] as the inverse of the square root of this ratio:

P2 =
✏2

T
=

1
T photonic

.

In order to mathematically model the gain saturation, an overall spherical constraint can
be imposed on the amplitudes fixing the total optical intensity in the system

NX

k=1

|ak|2 = ✏N . (11)

The precise value of the couplings in the Hamiltonian Eq. (9) requires the knowledge of
the spatial wavefunctions of the modes, see Eqs. (5) and (6), which is not available in random
lasers, since they are characterized by a complicated spatial structure of the modes. If, as it
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Potential, equilibrium-like distribution at inverse temperature

Random laser mode-locked spherical 2+4 phasors’ Hamiltonian

Mode-locking

• Theory for random lasers: a mode-locked 
spin-glass theory (disorder, open cavity)

The mode frequencies must satisfy this condition in order for their 
mutual interaction to be non-zero.
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Notes on the derivation of the RL Hamiltonian

Luca Leuzzi⇤

IPCF-CNR, UOS Kerberos Roma, Piazzale A. Moro 2, I-00185, Roma, Italy

Notes for the derivation of the RL Hamiltonian with di↵erent approaches: (i) optical cycle average
of the electromangetic energy; (ii) Quantum field theory for open optical cavities; (iii) multiscale
expansion for small nonlinear polarization; (iv) comparison with Haus master equation.

The complex amplitude model. — For a closed cavity, localized modes form a complete set and the electro-magnetic
field E(r, t) can be expanded in terms of normal modes En(r) with time-dependent complex amplitudes an(t)[1]. In
open cavities a continuous spectrum of radiation modes is also present. The contributions of radiative and localized
modes can be separated by a suitable projection onto two orthogonal subspaces [2, 3]. This leads to an e↵ective
theory on the subspace of localized modes in which they exchange a linear o↵-diagonal e↵ective damping coupling.
Radiation losses and gain are accounted for by additional linear terms (diagonal when the net gain is homogeneous),
and the presence of a thermal bath is represented by the fluctuations due to the spontaneous emission. Nonlinear
couplings arise from gain saturation and from the optical Kerr e↵ect. At equilibrium with the pump mechanism, the
complex amplitudes an(t) are linked by a constraint given by the total optical intensity pumped into the system

EP = ✏N =
NX

m=1

|am|
2

where N is the number of modes and ✏ the average energy per mode. The general Hamiltonian, derived by di↵erent
approaches [1, 4, 5], reads

H = �<

"
1

2

1,NX

n1,n2

J~n2an1a
⇤
n2

+
1

4!

nk=1,NX

!n1 + !n3

= !n2 + !n4

J~n4an1a
⇤
n2
an3a

⇤
n4

#

where J~np = Jn1...np and the second sum ranges over all distinct 4-ples for which the so-called ML condition holds:
!n1 � !n2 + !n3 � !n4 = 0. The coupling coe�cient J~n4 represents the spatial overlap of the electromagnetic fields
modulated by non-linear �(3)({!}; r) susceptibility:

J~n4 =
ı

2

4Y

j=1

p
!nj

Z

V
d
3
r �

(3)
~↵4

({!~n4}; r) (1)

⇥ E
↵1
n1

(r)E↵2
n2

(r)E↵3
n3

(r)E↵4
n4

(r)

with ↵j = x, y, z, and ~n4 = {n1, n2, n3, n4}. The linear coe�cient J~n2 yields di↵erent contributions depending on
medium randomness and cavity leakage:

J~n2 = Jn1�n1n2 + J
rad
~n2

+ J
inh
~n2

(2)

J
inh
~n2

=
ı

2

p
!n1!n2

Z

V
d
3
r �

(1)
~↵2

(r) E↵1
n1

(r)E↵2
n2

(r) (3)

The linear diagonal terms of J~n2 depend on gain and loss profiles for the passive modes. A possible non-uniform
distribution of the gain - and the related inhomogeneous linear susceptibility �

(1)(r) - yields the spatial overlap of
localized eigenmodes, i. e., J inh, Eq. (3). Besides, in the open cavity scenario, the linear o↵-diagonal coupling terms
also account for the presence of a continuous spectrum, and they correspond to the e↵ective damping contribution
J
rad obtained integrating out radiation modes [2, 3]. Taking the purely nonlinear interaction of a discrete set of modes

corresponds to the strong cavity limit, J rad = 0, with homogeneous gain (because of orthogonality of {En}’s it is
J
inh = 0). Only linear diagonal terms remain in this limit.
We build a mean-field theory in which the system is fully connected, that is, the network of interacting modes is a

complete graph. This amounts to adopt a narrow bandwidth approximation for the gain profile in which !n ' !0, for
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and we are back to the mode-locking standard laser.
If, instead, the cavity is open, as in cavities with leakages and (i) there will be radiative modes, whose frequencies

take values over a continuous dominion, thus the integral above can be a non-zero complex number. More glaringly,
in random media, with inhomogeneous optical susceptibility profiles, also the discrete lasing frequencies will not be
all equispaced. Furthermore, (ii) the “optical cycle” and the “roundtrip time” TR are delicate concepts in absence of
a cavity; they depend on the scatterers structure and on the dimensions of the disorder-induced stochastic resonators
where modes amplify. In these cases, there will be a non-zero non-diagonal contribution to the Hamiltonian.

This is better understood by studying the quantum field theory for open optical cavities as done by Hackenbroich
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If we are in a close cavity with regular mirrors the average h. . .ifast can be defined as the average over an optical
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heı(!n�!m)t
iopt.cyc. =

1

TR

Z TR

0
dt eı(!n�!m)t =

1

TR

Z TR

0
dt e

2⇡
TR

ı(n�m)t = 0 ; n 6= m

and we are back to the mode-locking standard laser.
If, instead, the cavity is open, as in cavities with leakages and (i) there will be radiative modes, whose frequencies

take values over a continuous dominion, thus the integral above can be a non-zero complex number. More glaringly,
in random media, with inhomogeneous optical susceptibility profiles, also the discrete lasing frequencies will not be
all equispaced. Furthermore, (ii) the “optical cycle” and the “roundtrip time” TR are delicate concepts in absence of
a cavity; they depend on the scatterers structure and on the dimensions of the disorder-induced stochastic resonators
where modes amplify. In these cases, there will be a non-zero non-diagonal contribution to the Hamiltonian.

This is better understood by studying the quantum field theory for open optical cavities as done by Hackenbroich
and Viviescas [3] and degrading from operators to complex numbers the so obtained Langevin equation [2]. From this
approach a further damping linear non-diagonal coupling �n1n2 = J rad
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arises. It consists in separating localized modes

inside the stimulated region and radiative modes by means of projections onto two separate spaces complementary to
each other and completing the whole space. It is then possible to devise a complete basis for all the modes divided
in localized eigenmodes uk(r), with discrete frequencies !k, and radiative eigenmodes vA(!, r) whose frequencies are
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If, instead, the cavity is open, as in cavities with leakages and (i) there will be radiative modes, whose frequencies

take values over a continuous dominion, thus the integral above can be a non-zero complex number. More glaringly,
in random media, with inhomogeneous optical susceptibility profiles, also the discrete lasing frequencies will not be
all equispaced. Furthermore, (ii) the “optical cycle” and the “roundtrip time” TR are delicate concepts in absence of
a cavity; they depend on the scatterers structure and on the dimensions of the disorder-induced stochastic resonators
where modes amplify. In these cases, there will be a non-zero non-diagonal contribution to the Hamiltonian.
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Complex Langevin dynamics

ȧn = �ı
@H

@a⇤n
+ ⌘n(t); h⌘n(t)i = 0; h⌘n(t)⌘m(s)i = 2T �(t� s)�nm ' 2T �(t� s)�nm (27)

mode - locking

�(!) = �0 + �
0
! +O(!2) (28)

Haus master equation

ȧn = (gm � `m + ıDm)an + (� � ı�)
X

!j�!k+!l=!n

aja
⇤
kal + ⌘n (29)

ȧn = �ı
@H

@a⇤n
+ ⌘n = ıJnan + ıJ4

X

!j�!k+!l=!n

aja
⇤
kal + ⌘n (30)

“Tlaser” =
T

✏2
(31)
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q0 = q1

q(x) = q

Intensity fluctuation overlap:
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.

ȧn(t) = �ı
@H

@a⇤n
� µ an(t) + ⌘n(t) (2)

Fn[{a}|{J}] ' �ı
@

@a⇤n
H[{a}|{J}]� µ an(t) (3)

ak(!k) = Ak(!k)eı�k(!k)

Ik = |ak|2,�k = arg(ak)
{Ik,�k,!k}

I,�,!
J
Ik(t) = |ak(t)|2

hIk(t)i =
1
T

R t0+T

t0
dt Ik(t)

[? ? ]

H = �
1

2

1,NX

jk

Jjkaja
⇤

k �
1

4!

1,NX

jklm

Jjklmaja
⇤

kala
⇤

m , (4)

where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 (5)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)

Mode spatial 
profiles

The “interaction” among phasors’ expresses the overlap of the 
spatial profiles of the e.m. modes, modulated by the nonlinear 
(random) optical susceptibility.
If the modes do not overlap they do not compete for the energy 
pumped into the system.

ˆLi

ˆJij

= 0 ˆLi

ˆhi

= 0

{J inf
ij

, hinf
i

}jœ\i = argmax
{Ji\i,hi}

#
Li({Ji\i, hi})

$

Lp-norm regularizer where a Lp-norm of K parameters x is

p

Ú
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b
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ȧn(t) = Fn[{a}|{J}] + ÷n(t)

Fn[{a}|{J}] ≥ ≠
ˆ

ˆaú
n

H[{a}|{J}]

Jn ©

⁄
dr E–1

n
(r) ‘–1–2(r) E–2

n
(r) (n1 = n2 = n) ‘(r) = ‘0

Ë
1 + ‰(1)(r)

È
–k = x, y, z

Jn1 ”=n2 = J inh
n1 ”=n2 + J rad

n1 ”=n2

J inh
n1 ”=n2 © ‘0Èeı(Ên1 ≠Ên2 )t
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⁄
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⁄
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–̨4
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Ên4 =

Y
]

[

Ên1 ≠ Ên2 + Ên3

Ên1 + Ên2 ≠ Ên3

≠Ên1 + Ên2 + Ên3
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The mode frequencies must satisfy this condition in order for their 
mutual interaction to be non-zero.

In*the*lasing*regime,*the*phases*of*the*
amplified*modes*acquire*a*linear*
rela0onship*to*the*frequencies:*

Mode!locking/Phase!locking!
takes*place*above*the*lasing*op0cal*power*threshold.*

It*is*triggered*by*a*non%linear*frequency*matching*condi0on**
occurring*in*the*saturable*absorber:*

Notes on the derivation of the RL Hamiltonian

Luca Leuzzi⇤

IPCF-CNR, UOS Kerberos Roma, Piazzale A. Moro 2, I-00185, Roma, Italy

Notes for the derivation of the RL Hamiltonian with di↵erent approaches: (i) optical cycle average
of the electromangetic energy; (ii) Quantum field theory for open optical cavities; (iii) multiscale
expansion for small nonlinear polarization; (iv) comparison with Haus master equation.

The complex amplitude model. — For a closed cavity, localized modes form a complete set and the electro-magnetic
field E(r, t) can be expanded in terms of normal modes En(r) with time-dependent complex amplitudes an(t)[1]. In
open cavities a continuous spectrum of radiation modes is also present. The contributions of radiative and localized
modes can be separated by a suitable projection onto two orthogonal subspaces [2, 3]. This leads to an e↵ective
theory on the subspace of localized modes in which they exchange a linear o↵-diagonal e↵ective damping coupling.
Radiation losses and gain are accounted for by additional linear terms (diagonal when the net gain is homogeneous),
and the presence of a thermal bath is represented by the fluctuations due to the spontaneous emission. Nonlinear
couplings arise from gain saturation and from the optical Kerr e↵ect. At equilibrium with the pump mechanism, the
complex amplitudes an(t) are linked by a constraint given by the total optical intensity pumped into the system

EP = ✏N =
NX

m=1

|am|
2

where N is the number of modes and ✏ the average energy per mode. The general Hamiltonian, derived by di↵erent
approaches [1, 4, 5], reads

H = �<

"
1

2

1,NX

n1,n2

J~n2an1a
⇤
n2

+
1

4!

nk=1,NX

!n1 + !n3

= !n2 + !n4

J~n4an1a
⇤
n2
an3a

⇤
n4

#

where J~np = Jn1...np and the second sum ranges over all distinct 4-ples for which the so-called ML condition holds:
!n1 � !n2 + !n3 � !n4 = 0. The coupling coe�cient J~n4 represents the spatial overlap of the electromagnetic fields
modulated by non-linear �(3)({!}; r) susceptibility:

J~n4 =
ı

2

4Y

j=1

p
!nj

Z

V
d
3
r �

(3)
~↵4

({!~n4}; r) (1)

⇥ E
↵1
n1

(r)E↵2
n2

(r)E↵3
n3

(r)E↵4
n4

(r)

with ↵j = x, y, z, and ~n4 = {n1, n2, n3, n4}. The linear coe�cient J~n2 yields di↵erent contributions depending on
medium randomness and cavity leakage:

J~n2 = Jn1�n1n2 + J
rad
~n2

+ J
inh
~n2

(2)

J
inh
~n2

=
ı

2

p
!n1!n2

Z

V
d
3
r �

(1)
~↵2

(r) E↵1
n1

(r)E↵2
n2

(r) (3)

The linear diagonal terms of J~n2 depend on gain and loss profiles for the passive modes. A possible non-uniform
distribution of the gain - and the related inhomogeneous linear susceptibility �

(1)(r) - yields the spatial overlap of
localized eigenmodes, i. e., J inh, Eq. (3). Besides, in the open cavity scenario, the linear o↵-diagonal coupling terms
also account for the presence of a continuous spectrum, and they correspond to the e↵ective damping contribution
J
rad obtained integrating out radiation modes [2, 3]. Taking the purely nonlinear interaction of a discrete set of modes

corresponds to the strong cavity limit, J rad = 0, with homogeneous gain (because of orthogonality of {En}’s it is
J
inh = 0). Only linear diagonal terms remain in this limit.
We build a mean-field theory in which the system is fully connected, that is, the network of interacting modes is a

complete graph. This amounts to adopt a narrow bandwidth approximation for the gain profile in which !n ' !0, for
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Complex Langevin dynamics

ȧn = �ı
@H

@a⇤n
+ ⌘n(t); h⌘n(t)i = 0; h⌘n(t)⌘m(s)i = 2T �(t� s)�nm ' 2T �(t� s)�nm (26)

mode - locking

�(!) = �0 + �
0
! +O(!2) (27)

Haus master equation

ȧn = (gm � `m + ıDm)an + (� � ı�)
X
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⇤
kal + ⌘n (28)
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+ ⌘n = ıJnan + ıJ4

X
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“Tlaser” =
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q0 = q1

q(x) = q

Intensity fluctuation overlap:
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Qab ⌘
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N

X

k

⇣
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↵
k |

2
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�
k |

2
� h|a

↵
k |

2
ih|a

�
k |

2
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⌘
! h|a

↵
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2
i�h|a

↵
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2
ih|a

�
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NR
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↵
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↵
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(34)
ak(!; t) = Ak(!; t)eı�k(!;t)

Ik(!) = h|ak(!; t)|2it

�n1 � �n2 + �n3 � �n4 = 0
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*

Ultrafast*mul0mode**
laser*

Gain saturation
Effective interaction

Mode-locking

SciPost Phys. 14, 144 (2023)

In the standard laser case the linear couplings are diagonal and the non-linear ones can be
safely considered as constant: in this case, Dk is the group velocity dispersion coefficient and
� is the self-phase modulation coefficient, responsible for the Kerr effect [40]. In the purely
dissipative limit [34,37], i.e. Dk1k2

⌧ Gk1k2
and �k1k2k3k4

⌧ �k1k2k3k4
, which in standard laser

theory corresponds to neglect the group velocity dispersion and the Kerr effect, the dynamics
of Eq. (2) becomes a potential differential equation

dak1

d t
= � @H[a]
@ ak1

(t)
+⌘k1

(t) ,

with a Hamiltonian function given by

H = �
X

k|FMC(k)

Gk1k2
ak1

ak2
�
X

k|FMC(k)

�k1k2k3k4
ak1

ak2
ak3

ak4
+ c.c. (9)

In principle, the noise is correlated, i.e. h⌘k1
⌘k2
i 6= �k1k2

. However, it can be diagonalized
by changing basis of dynamic variables: the decomposition of resonator modes into a slow
amplitude basis is not unique [57] and one can use this freedom to build a basis in which the
noise has no correlations. The diagonalization of the noise can be done at the cost of having
non-diagonal linear interactions, which is not a real complication in the random laser case,
since linear couplings already have off-diagonal contributions accounting for the openness of
the cavity.

The laser dynamics is brought to stationarity by gain saturation, a phenomenon connected
to the fact that, as the power is kept constant, the emitting atoms periodically decade in lower
states saturating the gain of the laser. In the same way the dynamics induced by the Hamil-
tonian Eq. (9) eventually reaches a stationary regime, when a constraint on the total energy
contained in the system is added. This argument was first proposed for standard multimode
lasers in Refs [37, 56]. In fact, lasers are strongly out of equilibrium: energy is constantly
pumped into the system in order to keep population inversion and stimulated emission, and in
the case of cavityless systems also compensate the leakages. However, a stationary regime can
be described as if the system is at equilibrium with an effective thermal bath, whose effective
temperature (a “photonic” temperature) accounts both for the amount of energy E = ✏N stored
into the system because of the external pumping and for the spontaneous emission rate. The
latter is proportional to the kinetic energy of the atoms, e. g., to the heat bath temperature T .
Eventually, the external parameter driving the lasing transition turns out to be [33,34,49]

Tphotonic =
T
✏2

. (10)

One can also introduce the pumping rate P [41] as the inverse of the square root of this ratio:

P2 =
✏2

T
=

1
T photonic

.

In order to mathematically model the gain saturation, an overall spherical constraint can
be imposed on the amplitudes fixing the total optical intensity in the system

NX

k=1

|ak|2 = ✏N . (11)

The precise value of the couplings in the Hamiltonian Eq. (9) requires the knowledge of
the spatial wavefunctions of the modes, see Eqs. (5) and (6), which is not available in random
lasers, since they are characterized by a complicated spatial structure of the modes. If, as it

6

Potential, equilibrium-like distribution at inverse temperature

Random laser mode-locked spherical 2+4 phasors’ Hamiltonian

• Theory for random lasers: a mode-locked 
spin-glass theory (disorder, open cavity)
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laser pulse

many modes of 
different frequencies 
compose the pulse

these modes are locked, for any set of modes (i,j,k,l) 
the frequency matching condition holds:  
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MODE LOCKING

?

• Theory for ultrafast mode-locked multimode 
lasers (order, closed cavity)

mode-locking and mode-coupling: no locking -> no coupling
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multiple scattering in place of mirror reflection

mode space overlap and heterogeneous non-linear optical response induces the 
mode-coupling

no ad hoc device: 
self-starting mode-locking in random lasers

no nonlinear device for 
mode-locking

no mirrors

Mode-locking in random lasers

F. Antenucci, G. Lerario, B. Silva Fernandez, L. De Marco, M. De Giorgi, D. Ballarini, D. Sanvitto, and LL,  
Phys. Rev. Lett. 126, 173901 (2021).
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• The narrow-band solution, phase diagrams, replica symmetry 
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• In between theory and experiment: a mode-locking model  
   Monte Carlo dynamics simulation with exchange Monte Carlo, 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• Power distribution among modes in the glassy light regime: 
condensation vs equipartition at high pumping 
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In*the*lasing*regime,*the*phases*of*the*
amplified*modes*acquire*a*linear*
rela0onship*to*the*frequencies:*

Mode!locking/Phase!locking!
takes*place*above*the*lasing*op0cal*power*threshold.*

It*is*triggered*by*a*non%linear*frequency*matching*condi0on**
occurring*in*the*saturable*absorber:*

Notes on the derivation of the RL Hamiltonian

Luca Leuzzi⇤

IPCF-CNR, UOS Kerberos Roma, Piazzale A. Moro 2, I-00185, Roma, Italy

Notes for the derivation of the RL Hamiltonian with di↵erent approaches: (i) optical cycle average
of the electromangetic energy; (ii) Quantum field theory for open optical cavities; (iii) multiscale
expansion for small nonlinear polarization; (iv) comparison with Haus master equation.

The complex amplitude model. — For a closed cavity, localized modes form a complete set and the electro-magnetic
field E(r, t) can be expanded in terms of normal modes En(r) with time-dependent complex amplitudes an(t)[1]. In
open cavities a continuous spectrum of radiation modes is also present. The contributions of radiative and localized
modes can be separated by a suitable projection onto two orthogonal subspaces [2, 3]. This leads to an e↵ective
theory on the subspace of localized modes in which they exchange a linear o↵-diagonal e↵ective damping coupling.
Radiation losses and gain are accounted for by additional linear terms (diagonal when the net gain is homogeneous),
and the presence of a thermal bath is represented by the fluctuations due to the spontaneous emission. Nonlinear
couplings arise from gain saturation and from the optical Kerr e↵ect. At equilibrium with the pump mechanism, the
complex amplitudes an(t) are linked by a constraint given by the total optical intensity pumped into the system

EP = ✏N =
NX

m=1

|am|
2

where N is the number of modes and ✏ the average energy per mode. The general Hamiltonian, derived by di↵erent
approaches [1, 4, 5], reads
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where J~np = Jn1...np and the second sum ranges over all distinct 4-ples for which the so-called ML condition holds:
!n1 � !n2 + !n3 � !n4 = 0. The coupling coe�cient J~n4 represents the spatial overlap of the electromagnetic fields
modulated by non-linear �(3)({!}; r) susceptibility:
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with ↵j = x, y, z, and ~n4 = {n1, n2, n3, n4}. The linear coe�cient J~n2 yields di↵erent contributions depending on
medium randomness and cavity leakage:

J~n2 = Jn1�n1n2 + J
rad
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The linear diagonal terms of J~n2 depend on gain and loss profiles for the passive modes. A possible non-uniform
distribution of the gain - and the related inhomogeneous linear susceptibility �

(1)(r) - yields the spatial overlap of
localized eigenmodes, i. e., J inh, Eq. (3). Besides, in the open cavity scenario, the linear o↵-diagonal coupling terms
also account for the presence of a continuous spectrum, and they correspond to the e↵ective damping contribution
J
rad obtained integrating out radiation modes [2, 3]. Taking the purely nonlinear interaction of a discrete set of modes

corresponds to the strong cavity limit, J rad = 0, with homogeneous gain (because of orthogonality of {En}’s it is
J
inh = 0). Only linear diagonal terms remain in this limit.
We build a mean-field theory in which the system is fully connected, that is, the network of interacting modes is a

complete graph. This amounts to adopt a narrow bandwidth approximation for the gain profile in which !n ' !0, for
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Complex Langevin dynamics

ȧn = �ı
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mode - locking

�(!) = �0 + �
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! +O(!2) (27)

Haus master equation
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Intensity fluctuation overlap:
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(34)
ak(!; t) = Ak(!; t)eı�k(!;t)

Ik(!) = h|ak(!; t)|2it

�n1 � �n2 + �n3 � �n4 = 0
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 is always satisfied and the interaction network is fully connected
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Averaging over fast times only a↵ects the non-diagonal linear term and yields
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If we are in a close cavity with regular mirrors the average h. . .ifast can be defined as the average over an optical
cycle, i.e., over a roundtrip time TR:
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0
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0
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ı(n�m)t = 0 ; n 6= m

and we are back to the mode-locking standard laser.
If, instead, the cavity is open, as in cavities with leakages and (i) there will be radiative modes, whose frequencies

take values over a continuous dominion, thus the integral above can be a non-zero complex number. More glaringly,
in random media, with inhomogeneous optical susceptibility profiles, also the discrete lasing frequencies will not be
all equispaced. Furthermore, (ii) the “optical cycle” and the “roundtrip time” TR are delicate concepts in absence of
a cavity; they depend on the scatterers structure and on the dimensions of the disorder-induced stochastic resonators
where modes amplify. In these cases, there will be a non-zero non-diagonal contribution to the Hamiltonian.

This is better understood by studying the quantum field theory for open optical cavities as done by Hackenbroich
and Viviescas [3] and degrading from operators to complex numbers the so obtained Langevin equation [2]. From this
approach a further damping linear non-diagonal coupling �n1n2 = J rad

~n2
arises.
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Naming J~n2 = J inh
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+ J rad
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we eventually have the Hamiltonian
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Averaging over fast times only a↵ects the non-diagonal linear term and yields
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If we are in a close cavity with regular mirrors the average h. . .ifast can be defined as the average over an optical
cycle, i.e., over a roundtrip time TR:
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dt eı(!n�!m)t =
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0
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ı(n�m)t = 0 ; n 6= m

and we are back to the mode-locking standard laser.
If, instead, the cavity is open, as in cavities with leakages and (i) there will be radiative modes, whose frequencies

take values over a continuous dominion, thus the integral above can be a non-zero complex number. More glaringly,
in random media, with inhomogeneous optical susceptibility profiles, also the discrete lasing frequencies will not be
all equispaced. Furthermore, (ii) the “optical cycle” and the “roundtrip time” TR are delicate concepts in absence of
a cavity; they depend on the scatterers structure and on the dimensions of the disorder-induced stochastic resonators
where modes amplify. In these cases, there will be a non-zero non-diagonal contribution to the Hamiltonian.

This is better understood by studying the quantum field theory for open optical cavities as done by Hackenbroich
and Viviescas [3] and degrading from operators to complex numbers the so obtained Langevin equation [2]. From this
approach a further damping linear non-diagonal coupling �n1n2 = J rad

~n2
arises. It consists in separating localized modes

inside the stimulated region and radiative modes by means of projections onto two separate spaces complementary to
each other and completing the whole space. It is then possible to devise a complete basis for all the modes divided
in localized eigenmodes uk(r), with discrete frequencies !k, and radiative eigenmodes vA(!, r) whose frequencies are
distributed on a continuum. The inner modes satisfy the von Neumann boundary condition

n̂ ^ [r^ uk]S = 0 (21)

whereas the outer modes satisfy the Dirichlet boundary conditions
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All*coupling*coefficients*are*in*general*complex*numbers*
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If we are in a close cavity with regular mirrors the average h. . .ifast can be defined as the average over an optical
cycle, i.e., over a roundtrip time TR:
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and we are back to the mode-locking standard laser.
If, instead, the cavity is open, as in cavities with leakages and (i) there will be radiative modes, whose frequencies

take values over a continuous dominion, thus the integral above can be a non-zero complex number. More glaringly,
in random media, with inhomogeneous optical susceptibility profiles, also the discrete lasing frequencies will not be
all equispaced. Furthermore, (ii) the “optical cycle” and the “roundtrip time” TR are delicate concepts in absence of
a cavity; they depend on the scatterers structure and on the dimensions of the disorder-induced stochastic resonators
where modes amplify. In these cases, there will be a non-zero non-diagonal contribution to the Hamiltonian.

This is better understood by studying the quantum field theory for open optical cavities as done by Hackenbroich
and Viviescas [3] and degrading from operators to complex numbers the so obtained Langevin equation [2]. From this
approach a further damping linear non-diagonal coupling �n1n2 = J

rad
~n2

arises. It consists in separating localized modes
inside the stimulated region and radiative modes by means of projections onto two separate spaces complementary to
each other and completing the whole space. It is then possible to devise a complete basis for all the modes divided
in localized eigenmodes uk(r), with discrete frequencies !k, and radiative eigenmodes vA(!, r) whose frequencies are
distributed on a continuum. The inner modes satisfy the von Neumann boundary condition

n̂ ^ [r^ uk]S = 0 (21)

whereas the outer modes satisfy the Dirichlet boundary conditions
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In a so-called input-output quantum field theory a Hamiltonian can be written in term of creation-annihilation
operators for both inner (ak) and outer (bA) modes:
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Complex Langevin dynamics
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k � ĪkqPN

k=1

�
I↵k � Īk

�2
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�2
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In the standard laser case the linear couplings are diagonal and the non-linear ones can be
safely considered as constant: in this case, Dk is the group velocity dispersion coefficient and
� is the self-phase modulation coefficient, responsible for the Kerr effect [40]. In the purely
dissipative limit [34,37], i.e. Dk1k2

⌧ Gk1k2
and �k1k2k3k4

⌧ �k1k2k3k4
, which in standard laser

theory corresponds to neglect the group velocity dispersion and the Kerr effect, the dynamics
of Eq. (2) becomes a potential differential equation

dak1

d t
= � @H[a]
@ ak1

(t)
+⌘k1

(t) ,

with a Hamiltonian function given by

H = �
X

k|FMC(k)

Gk1k2
ak1

ak2
�
X

k|FMC(k)

�k1k2k3k4
ak1

ak2
ak3

ak4
+ c.c. (9)

In principle, the noise is correlated, i.e. h⌘k1
⌘k2
i 6= �k1k2

. However, it can be diagonalized
by changing basis of dynamic variables: the decomposition of resonator modes into a slow
amplitude basis is not unique [57] and one can use this freedom to build a basis in which the
noise has no correlations. The diagonalization of the noise can be done at the cost of having
non-diagonal linear interactions, which is not a real complication in the random laser case,
since linear couplings already have off-diagonal contributions accounting for the openness of
the cavity.

The laser dynamics is brought to stationarity by gain saturation, a phenomenon connected
to the fact that, as the power is kept constant, the emitting atoms periodically decade in lower
states saturating the gain of the laser. In the same way the dynamics induced by the Hamil-
tonian Eq. (9) eventually reaches a stationary regime, when a constraint on the total energy
contained in the system is added. This argument was first proposed for standard multimode
lasers in Refs [37, 56]. In fact, lasers are strongly out of equilibrium: energy is constantly
pumped into the system in order to keep population inversion and stimulated emission, and in
the case of cavityless systems also compensate the leakages. However, a stationary regime can
be described as if the system is at equilibrium with an effective thermal bath, whose effective
temperature (a “photonic” temperature) accounts both for the amount of energy E = ✏N stored
into the system because of the external pumping and for the spontaneous emission rate. The
latter is proportional to the kinetic energy of the atoms, e. g., to the heat bath temperature T .
Eventually, the external parameter driving the lasing transition turns out to be [33,34,49]

Tphotonic =
T
✏2

. (10)

One can also introduce the pumping rate P [41] as the inverse of the square root of this ratio:

P2 =
✏2

T
=

1
T photonic

.

In order to mathematically model the gain saturation, an overall spherical constraint can
be imposed on the amplitudes fixing the total optical intensity in the system

NX

k=1

|ak|2 = ✏N . (11)

The precise value of the couplings in the Hamiltonian Eq. (9) requires the knowledge of
the spatial wavefunctions of the modes, see Eqs. (5) and (6), which is not available in random
lasers, since they are characterized by a complicated spatial structure of the modes. If, as it
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 (5)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint
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ȧn = �ı
@H

@a⇤n
+ ⌘n = ıJnan + ıJ4

X

!j�!k+!l=!n

aja
⇤
kal + ⌘n (29)

“Tlaser” =
T

✏2
(30)

q↵� =
1

N

X

k

a
↵
ka

⇤�
k (31)

s↵� =
1

N

X

k

a
↵
ka

�
k (32)

m↵ =
1

N

X

k

a
↵
k (33)

[1] C. Conti and L. Leuzzi, Phys. Rev. B 83, 134204 (2011).
[2] G. Hackenbroich, C. Viviescas, and F. Haake, Phys. Rev. A 68, 063805 (2003).
[3] C. Viviescas and G. Hackenbroich, Phys. Rev. A 67, 013805 (2003).
[4] L. Angelani, C. Conti, G. Ruocco, and F. Zamponi, Phys. Rev. B 74, 104207 (2006).
[5] L. Leuzzi, C. Conti, V. Folli, L. Angelani, and G. Ruocco, Phys. Rev. Lett. 102, 083901 (2009).
[6] T. M. Nieuwenhuizen, Phys. Rev. Lett. 74, 4289 (1995).
[7] A. Crisanti and L. Leuzzi, Phys. Rev. Lett. 93, 217203 (2004).
[8] A. Crisanti and L. Leuzzi, Phys. Rev. B 73, 014412 (2006).
[9] A. Crisanti and L. Leuzzi, Phys. Rev. B 75, 144301 (2007).

[10] A. Crisanti and L. Leuzzi, Nucl. Phys. B 870, 176 (2013).
[11] C. Conti and A. Fratalocchi, Nat. Physics 4, 794 (2008).
[12] J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, Nat. Photon. 3, 279 (2009).
[13] W. E. Lamb, Phys. Rev. 134, A1429 (1964).
[14] Murray Sargent III, Marlan O’Scully and Willis E. Lamb, Laser Physics (Addison Wesley Publishing Company, 1978).
[15] D. S. Wiersma and S. Cavalieri, Nature 414, 708 (2001).
[16] M. Leonetti and C. Conti, J. Opt. Soc. Am. 27, 1446 (2010).
[17] P. Meystre and M. Sargent III, Elements of Quantum Optics (Springer, 1998).
[18] More specifically, |!j � !k| < �!, for each j, k = 1, . . . , N , where �! is the line-width of the intensity spectrum. Indeed, in

most of RLs, it is not necessary that the resonant ML condition for having four modes interact is satisfied exactly [17].

5

Complex Langevin dynamics
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint
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The coupling strengths are here quenched independent random variables with mean J (2)

0
/Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.

2

Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.

ȧn(t) = �ı
@H

@a⇤n
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 (5)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)
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ȧn = �ı
@H

@a⇤n
+ ⌘n(t); h⌘n(t)i = 0; h⌘n(t)⌘m(s)i = 2T �(t� s)�nm ' 2T �(t� s)�nm (26)

mode - locking

�(!) = �0 + �
0
! +O(!2) (27)

Haus master equation

ȧn = (gm � `m + ıDm)an + (� � ı�)
X

!j�!k+!l=!n

aja
⇤
kal + ⌘n (28)
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint
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p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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The coupling strengths are here quenched independent random variables with mean J (2)
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p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also
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�J0 with J0 = J (2)
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0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint
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The coupling strengths are here quenched independent random variables with mean J (2)

0
/Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 (5)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint
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The coupling strengths are here quenched independent random variables with mean J (2)
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/Np�1 and variance
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p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 (5)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)
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The coupling strengths are here quenched independent random variables with mean J (2)
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
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k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint
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The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)
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Complex Langevin dynamics
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
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ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint
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The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
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p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)
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Notes on the derivation of the RL Hamiltonian
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Notes for the derivation of the RL Hamiltonian with di↵erent approaches: (i) optical cycle average
of the electromangetic energy; (ii) Quantum field theory for open optical cavities; (iii) multiscale
expansion for small nonlinear polarization; (iv) comparison with Haus master equation.

The complex amplitude model. — For a closed cavity, localized modes form a complete set and the electro-magnetic
field E(r, t) can be expanded in terms of normal modes En(r) with time-dependent complex amplitudes an(t)[1]. In
open cavities a continuous spectrum of radiation modes is also present. The contributions of radiative and localized
modes can be separated by a suitable projection onto two orthogonal subspaces [2, 3]. This leads to an e↵ective
theory on the subspace of localized modes in which they exchange a linear o↵-diagonal e↵ective damping coupling.
Radiation losses and gain are accounted for by additional linear terms (diagonal when the net gain is homogeneous),
and the presence of a thermal bath is represented by the fluctuations due to the spontaneous emission. Nonlinear
couplings arise from gain saturation and from the optical Kerr e↵ect. At equilibrium with the pump mechanism, the
complex amplitudes an(t) are linked by a constraint given by the total optical intensity pumped into the system

EP = ✏N =
NX

m=1

|am|
2

where N is the number of modes and ✏ the average energy per mode. The general Hamiltonian, derived by di↵erent
approaches [1, 4, 5], reads
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where J~np = Jn1...np and the second sum ranges over all distinct 4-ples for which the so-called ML condition holds:
!n1 � !n2 + !n3 � !n4 = 0. The coupling coe�cient J~n4 represents the spatial overlap of the electromagnetic fields
modulated by non-linear �(3)({!}; r) susceptibility:
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with ↵j = x, y, z, and ~n4 = {n1, n2, n3, n4}. The linear coe�cient J~n2 yields di↵erent contributions depending on
medium randomness and cavity leakage:
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The linear diagonal terms of J~n2 depend on gain and loss profiles for the passive modes. A possible non-uniform
distribution of the gain - and the related inhomogeneous linear susceptibility �

(1)(r) - yields the spatial overlap of
localized eigenmodes, i. e., J inh, Eq. (3). Besides, in the open cavity scenario, the linear o↵-diagonal coupling terms
also account for the presence of a continuous spectrum, and they correspond to the e↵ective damping contribution
J
rad obtained integrating out radiation modes [2, 3]. Taking the purely nonlinear interaction of a discrete set of modes

corresponds to the strong cavity limit, J rad = 0, with homogeneous gain (because of orthogonality of {En}’s it is
J
inh = 0). Only linear diagonal terms remain in this limit.
We build a mean-field theory in which the system is fully connected, that is, the network of interacting modes is a

complete graph. This amounts to adopt a narrow bandwidth approximation for the gain profile in which !n ' !0, for
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each n = 1, . . . , N [18]. This is the case in the so-called dispersive RLs with very low finesse and a sensitive narrowing
of the bandwidth above threshold, in which many modes oscillate in a relative small bandwidth and are so densely
packed in frequency that their linewidths overlap. Consistently with this approximation we take a constant e↵ective
net gain profile in the bandwidth: Jn = g(!n) ' g(!0) = g0, implying

P
n1,n2

J~n2an1an2 = g0EP +
P

n1 6=n2
J~n2an1an2 .

The open cavity model in the narrow bandwidth approximation can be viewed as an extension of the so-called
spherical 2+p model [6–10] yielding a far reacher variety of physical scenarios.

The o↵-diagonal linear terms and the non-linear terms may, in general, be disordered because modes display di↵erent
degree and shape of localizations [11, 12]. The constituents of the integrals in Eq. (1,3) are very di�cult to calculate
from first principles. The only specific form of the non-linear susceptibility has been computed by Lamb [13, 14]
for few-modes standard lasers and no analogue study for RLs has been performed so far, to our knowledge. The
overlap integrals in a disordered system can be regarded as a sum over many random variables. Correspondingly, the
probability distribution of the couplings J~np can be assumed to be Gaussian:
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with p = 2, 4. To simplify the computation and its presentation we will take real-valued interaction couplings. This
amounts, e. g., to neglect the e↵ect of group velocity in the diagonal linear part and the Kerr lens e↵ect in the
nonlinear term, but does not change the generality of the qualitative picture. This is the most general Hamiltonian
model for laser systems that one can consider. Indeed, also adding further non-linear terms (J~np with p = 3, 5, 6, . . .)
does not alter the qualitative behavior at the transition from continuous wave to (standard or random) lasing regimes.
The external parameters — In order to yield a comprehensive description, we introduce the degrees of non-linearity
↵0,↵ - varying in the interval [0, 1] - and suitable interaction energy scales J0, J , for the ordered and disordered
component, respectively:

J
(4)
0 = ↵0J0; ↵0 =


J(2)
0

J(4)
0

+ 1

��1

; J0 = J
(2)
0 + J

(4)
0 (5)

J4 = ↵J ; ↵ =
h
J2
J4

+ 1
i�1

; J = J2 + J4 (6)

The degree of disorder of a given system with coupling parameter scales J, J0 is, then, defined as RJ = J/J0.
The average energy per mode ✏ is related to the so-called pumping rate P induced by the pumping laser source in

the RL, or proportional to the optical power in the cavity for the standard laser. In the present work it is defined as
P ⌘ ✏

p
J0/kBT = ✏

p
�J0 where T is the heat-bath temperature. It encodes the experimental evidence that decreasing

temperature [15] or increasing the total power [16] yields qualitatively similar behaviors. The factor J0 is a material
dependent parameter function of the angular frequency !0 of the peak of the average spectrum, cf. Eq. (1), and it is
volume independent.

To summarize, the parameters of interest are:

Optical power per mode ✏

Heat-bath thermal energy kBT = 1/�

Cumulative coupling average J0 = J
(2)
0 + J

(4)
0

Cumulative mean square disp. J = J2 + J4

Pumping rate P = ✏
p
�J0

Disorder degree RJ = J/J0

Non-linearity degree (ordered) ↵0 = J
(4)
0 /J0

Non-linearity degree (disordered) ↵ = J4/J .

I. HAMILTONIAN DERIVATION I

Electromagnetic energy

Eem =

Z
E

⇤(r, t) ·D(r, t) dV (7)

Electric displacement field

D(r) = ✏0✏r(r)E(r) + Pnl(r) (8)

No0ce*that*in*Random*Lasers*the*effect*of*lowering*the*T*is*shown*
to*be*experimentally*equivalent*to*raise*the*op0cal*power.**
D.*S.*Wiersma*and*S.*Cavalieri*(Nature*2001,*PRE*2002),**
Light(emission:(A(temperature1tunable(random(laser*
T.*Nakamura,*T.*Takahashi,*and*S.*Adachi*(PRB*2010),*
Temperature(dependence(of(GaAs(random(laser(characteris+cs(
(

2

RJ ⌘ J

J0
8
>>>>>>>>>><

>>>>>>>>>>:

a
a
a
a
a
a
a
a

9
>>>>>>>>>>=

>>>>>>>>>>;

rd

m

2 log2 N

|k1 � k2 + k3 � k4| = 0

Ik = |ak|2

H[a] = �
X

k|FMC(k)

Jk1k2k3k4ak1ak2ak3ak4 + c.c. = J1234a1a2a3a4 + J1235a1a2a3a5 + J1239a1a2a3a9 + . . .

| {z }
|!i � !j + !k � !l| < �

= O(N3)

Tc = 0.61(3)
✓

N
4

◆
= O

�
N4

�

✓
N
4

◆
⇥
✓

2

3N
+

1

3N3

◆

P (Q)

H[a] = �J1234a1a2a3a4 =
1

O(N)
O(N2) = O(N)

H[a] = �J1234a1a2a3a4 =
1

O(N1/2)
O(N2) = O(N3/2) � O(N)

H[a] = �J1234a1a2a3a4 =
1

O(N3/2)
O(N2) = O(N1/2) ⌧ O(N)

H[a] = �J1234a1a2a3a4 =
1

O(N)
O(N2) = O(N)

min
a

H[a] = O(N)

{a} : |ak| 2 ⇤ /
p
N , |ak|��2 ⇤ = 0

{a} : |ak| ' 1 8 k = 1, . . . , N

PUMPING RATE (INVERSE TEMPERATURE)

DISORDER DEGREE (msd / mean)

“CLOSEDNESS” 



Random lasers as 
complex disordered 
systems 
Luca Leuzzi

CLOSED CAVITY + ANY DEGREE OF DISORDER
SML: Standard (and random) ML laser 
CW/IW: Con-nuous/Incoherent Wave regime 
PLW: Phase-Locked Wave regime 
GRL: Gassy Random Laser

SML ↔ (random) Ferromagnet 
CW/IW ↔ Paramagnet 
PLW ↔ ---- 
GRL ↔ Glassy phase

5

Complex Langevin dynamics
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The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J/J0 and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (23)

� being the finite linewidth of the modes.
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Results (1585 words)
The Random Laser Transition. Thus, the relevant quantity is the disorder averaged free energy F = �lnZJ/�, where
the overline denotes the average over the distribution of quenched disordered couplings.

In the complex amplitude spherical model, equation (4), the order parameter of the replica theory turns out to be
given by the overlap between amplitudes of replica a and replica b:

Qab =
1

N✏

NX

k=1

aak
�
abk

�⇤
(25)

To our knowledge, from an experimental point of view, no phase correlation measurements, required for the evaluation
of the complex amplitudes aak and, consequently, of Qab, is available so far. Only magnitudes |ak| are measured and
not their phases �k = arg(ak). The experimental reconstruction of the distribution of the values of equation (23) is,
thus, unfeasible.
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Ĵjklm cos(�j � �k + �l � �m) (24)

Results (1585 words)
The Random Laser Transition. Thus, the relevant quantity is the disorder averaged free energy F = �lnZJ/�, where
the overline denotes the average over the distribution of quenched disordered couplings.

In the complex amplitude spherical model, equation (4), the order parameter of the replica theory turns out to be
given by the overlap between amplitudes of replica a and replica b:

Qab =
1

N✏

NX

k=1

aak
�
abk

�⇤
(25)

To our knowledge, from an experimental point of view, no phase correlation measurements, required for the evaluation
of the complex amplitudes aak and, consequently, of Qab, is available so far. Only magnitudes |ak| are measured and
not their phases �k = arg(ak). The experimental reconstruction of the distribution of the values of equation (23) is,
thus, unfeasible.

3

P (J) (16)

P (J~np) =

s
Np�1

2⇡J2
p

exp

8
<

:�
Np�1

2J2
p

"
J~np �

J (p)
0

Np�1

#2
9
=

; (17)

P (J) =
1p
2⇡�2

J

exp

(
�

�
J � J̄

�2

2�2
J

)
(18)

RJ = �J/J . 1 (19)

x (20)

rd (21)

m (22)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J/J0 and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (23)

� being the finite linewidth of the modes.

H = �
1

2

1,NX

jk
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint
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p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
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ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J/J0 and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala
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m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (23)

� being the finite linewidth of the modes.
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Results (1585 words)
The Random Laser Transition. Thus, the relevant quantity is the disorder averaged free energy F = �lnZJ/�, where
the overline denotes the average over the distribution of quenched disordered couplings.

In the complex amplitude spherical model, equation (4), the order parameter of the replica theory turns out to be
given by the overlap between amplitudes of replica a and replica b:
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aak
�
abk
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(25)

To our knowledge, from an experimental point of view, no phase correlation measurements, required for the evaluation
of the complex amplitudes aak and, consequently, of Qab, is available so far. Only magnitudes |ak| are measured and
not their phases �k = arg(ak). The experimental reconstruction of the distribution of the values of equation (23) is,
thus, unfeasible.
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Ĵjklm cos(�j � �k + �l � �m) (24)

Results (1585 words)
The Random Laser Transition. Thus, the relevant quantity is the disorder averaged free energy F = �lnZJ/�, where
the overline denotes the average over the distribution of quenched disordered couplings.

In the complex amplitude spherical model, equation (4), the order parameter of the replica theory turns out to be
given by the overlap between amplitudes of replica a and replica b:

Qab =
1

N✏

NX

k=1

aak
�
abk

�⇤
(25)

To our knowledge, from an experimental point of view, no phase correlation measurements, required for the evaluation
of the complex amplitudes aak and, consequently, of Qab, is available so far. Only magnitudes |ak| are measured and
not their phases �k = arg(ak). The experimental reconstruction of the distribution of the values of equation (23) is,
thus, unfeasible.

PHASE DIAGRAMS

GLASSY

/ IW

2

I. STOCHASTIC STABILITY AND P (q) MEASURE

X(q) = X̃(q) (1)

II. SPIN GLASS SUSCEPTIBILITY

�FC = � (1� qEA) (2)

�ZFC = � (1� q) (3)

qEA =
1

N

X

i

m2

i = max
q

P (q) (4)

q =

Z
dq q P (q) (5)

III. IFO

q(x)

q↵� =
1

N

NX

k=1

ha↵ka
⇤�
k i (6)

Q↵� ⌘ 1

N

NX

k=1

*⇣
|a↵k |2 �

⌦
|a↵k |2

↵⌘⇣
|a�k |

2 �
⌦
|a�k |

2
↵⌘

+

Q↵� ⌘ 1

N

NX

k=1

⇣⌦
|a↵k |2|a

�
k |

2
↵
�

⌦
|a↵k |2

↵⌦
|a�k |

2
↵⌘

(7)

Q↵� = q2↵� (8)

Q↵� = q2↵� � |m|4
4

(9)

I↵k = |a↵k |2 (10)

P (Qexp

IFO
) = P

�
QMF�FC

IFO

�
(11)

|!j � !k + !l � !m| . �

P = ✏
p
T

g(E) = g0
1 + E

Esat

ƒ g0 ≠
g0E

Esat
E π Esat

I(Ê) = |a(Ê)|2

H = ≠

ÿ

n1,n2

Jn1n2an1aú

n2 ≠

ÿ

Ên1 ≠Ên2 +Ên3 ≠Ên4

Jn̨4an1aú

n2an3aú

n4 + c.c.

Jn ≥ g(Ên) ƒ g(Ê0) = g0

ÿ

n1,n2

Jn1n2an1aú

n2 = g0E +
ÿ

n1 ”=n2

Jn1n2an1aú

n2

p = 2, 4

Ên ƒ Ê0 ’n

E =
ÿ

n

|an(Ên)|2 = N‘

g(E) | Ė = 0

rd

9

Narrow-band random laser 
spherical 2+4 phasors’ Hamiltonian

15

Ik(t) = |ak(t)|2

hIk(t)i = 1

T

R t0+T

t0
dt Ik(t)

[? ? ]

H = �1

2

1,NX

jk

Jjkaja
⇤

k � 1

4!

1,NX

jklm

Jjklm aja
⇤

kala
⇤

m , (34)

H = �1

2

1,NX

jk

Jjkaja
⇤

k � 1

4!

1,NX

j<k<l<m

Jjklm aja
⇤

kala
⇤

m + c.c. , (35)

H = � 1

4!

1,NX

j < k < l < m
|!j � !k + !m � !l| ' 0

Jjklm aja
⇤

ka
⇤

l am , (36)

where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|2 = const (37)

q = |m|2/2 (38)

q = |m|2/2 +� (39)

Qab = q2ab �
|m|4
4

(40)

Q = 0 (41)

Q = |m|2�+�2 (42)

m =

p
2

N

NX

k=1

ak (43)

q = m = 0 (44)

↵ = x, y, z (45)

|!j � !k + !l � !m| < � (46)

�(!) ' �(!0) + �0 ⇥ (! � !0) (47)

P (J) (48)

P (J~np
) =

s
Np�1

2⇡J2
p

exp

8
<

:�Np�1

2J2
p

"
J~np

� J (p)
0

Np�1

#2
9
=

; (49)

P (J) =
1p
2⇡�2

J

exp

(
�
�
J � J̄

�2

2�2

J

)
(50)

RJ = �J/J . 1 (51)

x (52)

rd, q0,1, x (53)

m (54)

The coupling strengths are here quenched independent random variables with mean J (2)

0
/Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.

2

Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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Notes for the derivation of the RL Hamiltonian with di↵erent approaches: (i) optical cycle average
of the electromangetic energy; (ii) Quantum field theory for open optical cavities; (iii) multiscale
expansion for small nonlinear polarization; (iv) comparison with Haus master equation.

The complex amplitude model. — For a closed cavity, localized modes form a complete set and the electro-magnetic
field E(r, t) can be expanded in terms of normal modes En(r) with time-dependent complex amplitudes an(t)[1]. In
open cavities a continuous spectrum of radiation modes is also present. The contributions of radiative and localized
modes can be separated by a suitable projection onto two orthogonal subspaces [2, 3]. This leads to an e↵ective
theory on the subspace of localized modes in which they exchange a linear o↵-diagonal e↵ective damping coupling.
Radiation losses and gain are accounted for by additional linear terms (diagonal when the net gain is homogeneous),
and the presence of a thermal bath is represented by the fluctuations due to the spontaneous emission. Nonlinear
couplings arise from gain saturation and from the optical Kerr e↵ect. At equilibrium with the pump mechanism, the
complex amplitudes an(t) are linked by a constraint given by the total optical intensity pumped into the system

EP = ✏N =
NX

m=1

|am|
2

where N is the number of modes and ✏ the average energy per mode. The general Hamiltonian, derived by di↵erent
approaches [1, 4, 5], reads

H = �<

"
1

2

1,NX

n1,n2

J~n2an1a
⇤
n2

+
1

4!

nk=1,NX

!n1 + !n3

= !n2 + !n4

J~n4an1a
⇤
n2
an3a

⇤
n4

#

where J~np = Jn1...np and the second sum ranges over all distinct 4-ples for which the so-called ML condition holds:
!n1 � !n2 + !n3 � !n4 = 0. The coupling coe�cient J~n4 represents the spatial overlap of the electromagnetic fields
modulated by non-linear �(3)({!}; r) susceptibility:

J~n4 =
ı

2

4Y

j=1

p
!nj

Z

V
d
3
r �

(3)
~↵4

({!~n4}; r) (1)

⇥ E
↵1
n1

(r)E↵2
n2

(r)E↵3
n3

(r)E↵4
n4

(r)

with ↵j = x, y, z, and ~n4 = {n1, n2, n3, n4}. The linear coe�cient J~n2 yields di↵erent contributions depending on
medium randomness and cavity leakage:

J~n2 = Jn1�n1n2 + J
rad
~n2

+ J
inh
~n2

(2)

J
inh
~n2

=
ı

2

p
!n1!n2

Z

V
d
3
r �

(1)
~↵2

(r) E↵1
n1

(r)E↵2
n2

(r) (3)

The linear diagonal terms of J~n2 depend on gain and loss profiles for the passive modes. A possible non-uniform
distribution of the gain - and the related inhomogeneous linear susceptibility �

(1)(r) - yields the spatial overlap of
localized eigenmodes, i. e., J inh, Eq. (3). Besides, in the open cavity scenario, the linear o↵-diagonal coupling terms
also account for the presence of a continuous spectrum, and they correspond to the e↵ective damping contribution
J
rad obtained integrating out radiation modes [2, 3]. Taking the purely nonlinear interaction of a discrete set of modes

corresponds to the strong cavity limit, J rad = 0, with homogeneous gain (because of orthogonality of {En}’s it is
J
inh = 0). Only linear diagonal terms remain in this limit.
We build a mean-field theory in which the system is fully connected, that is, the network of interacting modes is a

complete graph. This amounts to adopt a narrow bandwidth approximation for the gain profile in which !n ' !0, for
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@H

@a⇤n
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mode - locking
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0
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Haus master equation
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X
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⇤
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X
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⇤
kal + ⌘n (29)

“Tlaser” =
T
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(30)
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PUMPING*RATE*
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each n = 1, . . . , N [18]. This is the case in the so-called dispersive RLs with very low finesse and a sensitive narrowing
of the bandwidth above threshold, in which many modes oscillate in a relative small bandwidth and are so densely
packed in frequency that their linewidths overlap. Consistently with this approximation we take a constant e↵ective
net gain profile in the bandwidth: Jn = g(!n) ' g(!0) = g0, implying

P
n1,n2

J~n2an1an2 = g0EP +
P

n1 6=n2
J~n2an1an2 .

The open cavity model in the narrow bandwidth approximation can be viewed as an extension of the so-called
spherical 2+p model [6–10] yielding a far reacher variety of physical scenarios.

The o↵-diagonal linear terms and the non-linear terms may, in general, be disordered because modes display di↵erent
degree and shape of localizations [11, 12]. The constituents of the integrals in Eq. (1,3) are very di�cult to calculate
from first principles. The only specific form of the non-linear susceptibility has been computed by Lamb [13, 14]
for few-modes standard lasers and no analogue study for RLs has been performed so far, to our knowledge. The
overlap integrals in a disordered system can be regarded as a sum over many random variables. Correspondingly, the
probability distribution of the couplings J~np can be assumed to be Gaussian:

P (J~np) =

s
Np�1

2⇡J2
p

exp

8
<

:�
N

p�1

2J2
p

"
J~np �

J
(p)
0

Np�1

#2
9
=

; (4)

with p = 2, 4. To simplify the computation and its presentation we will take real-valued interaction couplings. This
amounts, e. g., to neglect the e↵ect of group velocity in the diagonal linear part and the Kerr lens e↵ect in the
nonlinear term, but does not change the generality of the qualitative picture. This is the most general Hamiltonian
model for laser systems that one can consider. Indeed, also adding further non-linear terms (J~np with p = 3, 5, 6, . . .)
does not alter the qualitative behavior at the transition from continuous wave to (standard or random) lasing regimes.
The external parameters — In order to yield a comprehensive description, we introduce the degrees of non-linearity
↵0,↵ - varying in the interval [0, 1] - and suitable interaction energy scales J0, J , for the ordered and disordered
component, respectively:

J
(4)
0 = ↵0J0; ↵0 =


J(2)
0

J(4)
0

+ 1

��1

; J0 = J
(2)
0 + J

(4)
0 (5)

J4 = ↵J ; ↵ =
h
J2
J4

+ 1
i�1

; J = J2 + J4 (6)

The degree of disorder of a given system with coupling parameter scales J, J0 is, then, defined as RJ = J/J0.
The average energy per mode ✏ is related to the so-called pumping rate P induced by the pumping laser source in

the RL, or proportional to the optical power in the cavity for the standard laser. In the present work it is defined as
P ⌘ ✏

p
J0/kBT = ✏

p
�J0 where T is the heat-bath temperature. It encodes the experimental evidence that decreasing

temperature [15] or increasing the total power [16] yields qualitatively similar behaviors. The factor J0 is a material
dependent parameter function of the angular frequency !0 of the peak of the average spectrum, cf. Eq. (1), and it is
volume independent.

To summarize, the parameters of interest are:

Optical power per mode ✏

Heat-bath thermal energy kBT = 1/�

Cumulative coupling average J0 = J
(2)
0 + J

(4)
0

Cumulative mean square disp. J = J2 + J4

Pumping rate P = ✏
p
�J0

Disorder degree RJ = J/J0

Non-linearity degree (ordered) ↵0 = J
(4)
0 /J0

Non-linearity degree (disordered) ↵ = J4/J .

I. HAMILTONIAN DERIVATION I

Electromagnetic energy

Eem =

Z
E

⇤(r, t) ·D(r, t) dV (7)

Electric displacement field

D(r) = ✏0✏r(r)E(r) + Pnl(r) (8)
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OPEN CAVITY + ANY DEGREE OF DISORDER
SML: Standard (and random) ML laser 
CW/IW: Con-nuous/Incoherent Wave regime 
PLW: Phase-Locked Wave regime 
GRL: Gassy Random Laser

SML ↔ (random) Ferromagnet 
CW/IW ↔ Paramagnet 
PLW ↔ ---- 
GRL ↔ Glassy phase

PHASE DIAGRAMS

G

/ IW

2

I. STOCHASTIC STABILITY AND P (q) MEASURE

X(q) = X̃(q) (1)

II. SPIN GLASS SUSCEPTIBILITY

�FC = � (1� qEA) (2)
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Narrow-band random laser 
spherical 2+4 phasors’ Hamiltonian
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Ik(t) = |ak(t)|2
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[? ? ]

H = �1

2

1,NX

jk

Jjkaja
⇤

k � 1

4!

1,NX

jklm

Jjklm aja
⇤

kala
⇤

m , (34)

H = �1

2

1,NX

jk

Jjkaja
⇤

k � 1

4!

1,NX

j<k<l<m

Jjklm aja
⇤

kala
⇤

m + c.c. , (35)

H = � 1

4!

1,NX

j < k < l < m
|!j � !k + !m � !l| ' 0

Jjklm aja
⇤

ka
⇤

l am , (36)

where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint
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The coupling strengths are here quenched independent random variables with mean J (2)

0
/Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.

2

Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.

ȧn(t) = �ı
@H

@a⇤n
� µ an(t) + ⌘n(t) (2)

Fn[{a}|{J}] ' �ı
@

@a⇤n
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ak(!k) = Ak(!k)eı�k(!k)

Ik = |ak|2,�k = arg(ak)
{Ik,�k,!k}

I,�,!
J
Ik(t) = |ak(t)|2

hIk(t)i =
1
T
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t0
dt Ik(t)

[? ? ]
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4!
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Jjklmaja
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 (5)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)
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Notes for the derivation of the RL Hamiltonian with di↵erent approaches: (i) optical cycle average
of the electromangetic energy; (ii) Quantum field theory for open optical cavities; (iii) multiscale
expansion for small nonlinear polarization; (iv) comparison with Haus master equation.

The complex amplitude model. — For a closed cavity, localized modes form a complete set and the electro-magnetic
field E(r, t) can be expanded in terms of normal modes En(r) with time-dependent complex amplitudes an(t)[1]. In
open cavities a continuous spectrum of radiation modes is also present. The contributions of radiative and localized
modes can be separated by a suitable projection onto two orthogonal subspaces [2, 3]. This leads to an e↵ective
theory on the subspace of localized modes in which they exchange a linear o↵-diagonal e↵ective damping coupling.
Radiation losses and gain are accounted for by additional linear terms (diagonal when the net gain is homogeneous),
and the presence of a thermal bath is represented by the fluctuations due to the spontaneous emission. Nonlinear
couplings arise from gain saturation and from the optical Kerr e↵ect. At equilibrium with the pump mechanism, the
complex amplitudes an(t) are linked by a constraint given by the total optical intensity pumped into the system

EP = ✏N =
NX

m=1

|am|
2

where N is the number of modes and ✏ the average energy per mode. The general Hamiltonian, derived by di↵erent
approaches [1, 4, 5], reads

H = �<

"
1

2

1,NX

n1,n2

J~n2an1a
⇤
n2

+
1

4!

nk=1,NX

!n1 + !n3

= !n2 + !n4

J~n4an1a
⇤
n2
an3a

⇤
n4

#

where J~np = Jn1...np and the second sum ranges over all distinct 4-ples for which the so-called ML condition holds:
!n1 � !n2 + !n3 � !n4 = 0. The coupling coe�cient J~n4 represents the spatial overlap of the electromagnetic fields
modulated by non-linear �(3)({!}; r) susceptibility:

J~n4 =
ı

2

4Y

j=1

p
!nj

Z

V
d
3
r �

(3)
~↵4

({!~n4}; r) (1)

⇥ E
↵1
n1

(r)E↵2
n2

(r)E↵3
n3

(r)E↵4
n4

(r)

with ↵j = x, y, z, and ~n4 = {n1, n2, n3, n4}. The linear coe�cient J~n2 yields di↵erent contributions depending on
medium randomness and cavity leakage:

J~n2 = Jn1�n1n2 + J
rad
~n2

+ J
inh
~n2

(2)

J
inh
~n2

=
ı

2

p
!n1!n2

Z

V
d
3
r �

(1)
~↵2

(r) E↵1
n1

(r)E↵2
n2

(r) (3)

The linear diagonal terms of J~n2 depend on gain and loss profiles for the passive modes. A possible non-uniform
distribution of the gain - and the related inhomogeneous linear susceptibility �

(1)(r) - yields the spatial overlap of
localized eigenmodes, i. e., J inh, Eq. (3). Besides, in the open cavity scenario, the linear o↵-diagonal coupling terms
also account for the presence of a continuous spectrum, and they correspond to the e↵ective damping contribution
J
rad obtained integrating out radiation modes [2, 3]. Taking the purely nonlinear interaction of a discrete set of modes

corresponds to the strong cavity limit, J rad = 0, with homogeneous gain (because of orthogonality of {En}’s it is
J
inh = 0). Only linear diagonal terms remain in this limit.
We build a mean-field theory in which the system is fully connected, that is, the network of interacting modes is a

complete graph. This amounts to adopt a narrow bandwidth approximation for the gain profile in which !n ' !0, for
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Complex Langevin dynamics

ȧn = �ı
@H
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+ ⌘n(t); h⌘n(t)i = 0; h⌘n(t)⌘m(s)i = 2T �(t� s)�nm ' 2T �(t� s)�nm (26)

mode - locking

�(!) = �0 + �
0
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Haus master equation

ȧn = (gm � `m + ıDm)an + (� � ı�)
X

!j�!k+!l=!n

aja
⇤
kal + ⌘n (28)

ȧn = �ı
@H
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+ ⌘n = ıJnan + ıJ4

X
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⇤
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“Tlaser” =
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each n = 1, . . . , N [18]. This is the case in the so-called dispersive RLs with very low finesse and a sensitive narrowing
of the bandwidth above threshold, in which many modes oscillate in a relative small bandwidth and are so densely
packed in frequency that their linewidths overlap. Consistently with this approximation we take a constant e↵ective
net gain profile in the bandwidth: Jn = g(!n) ' g(!0) = g0, implying

P
n1,n2

J~n2an1an2 = g0EP +
P

n1 6=n2
J~n2an1an2 .

The open cavity model in the narrow bandwidth approximation can be viewed as an extension of the so-called
spherical 2+p model [6–10] yielding a far reacher variety of physical scenarios.

The o↵-diagonal linear terms and the non-linear terms may, in general, be disordered because modes display di↵erent
degree and shape of localizations [11, 12]. The constituents of the integrals in Eq. (1,3) are very di�cult to calculate
from first principles. The only specific form of the non-linear susceptibility has been computed by Lamb [13, 14]
for few-modes standard lasers and no analogue study for RLs has been performed so far, to our knowledge. The
overlap integrals in a disordered system can be regarded as a sum over many random variables. Correspondingly, the
probability distribution of the couplings J~np can be assumed to be Gaussian:

P (J~np) =

s
Np�1

2⇡J2
p

exp

8
<

:�
N

p�1

2J2
p

"
J~np �

J
(p)
0

Np�1

#2
9
=

; (4)

with p = 2, 4. To simplify the computation and its presentation we will take real-valued interaction couplings. This
amounts, e. g., to neglect the e↵ect of group velocity in the diagonal linear part and the Kerr lens e↵ect in the
nonlinear term, but does not change the generality of the qualitative picture. This is the most general Hamiltonian
model for laser systems that one can consider. Indeed, also adding further non-linear terms (J~np with p = 3, 5, 6, . . .)
does not alter the qualitative behavior at the transition from continuous wave to (standard or random) lasing regimes.
The external parameters — In order to yield a comprehensive description, we introduce the degrees of non-linearity
↵0,↵ - varying in the interval [0, 1] - and suitable interaction energy scales J0, J , for the ordered and disordered
component, respectively:

J
(4)
0 = ↵0J0; ↵0 =


J(2)
0

J(4)
0

+ 1

��1

; J0 = J
(2)
0 + J

(4)
0 (5)

J4 = ↵J ; ↵ =
h
J2
J4

+ 1
i�1

; J = J2 + J4 (6)

The degree of disorder of a given system with coupling parameter scales J, J0 is, then, defined as RJ = J/J0.
The average energy per mode ✏ is related to the so-called pumping rate P induced by the pumping laser source in

the RL, or proportional to the optical power in the cavity for the standard laser. In the present work it is defined as
P ⌘ ✏

p
J0/kBT = ✏

p
�J0 where T is the heat-bath temperature. It encodes the experimental evidence that decreasing

temperature [15] or increasing the total power [16] yields qualitatively similar behaviors. The factor J0 is a material
dependent parameter function of the angular frequency !0 of the peak of the average spectrum, cf. Eq. (1), and it is
volume independent.

To summarize, the parameters of interest are:

Optical power per mode ✏

Heat-bath thermal energy kBT = 1/�

Cumulative coupling average J0 = J
(2)
0 + J

(4)
0

Cumulative mean square disp. J = J2 + J4

Pumping rate P = ✏
p
�J0

Disorder degree RJ = J/J0

Non-linearity degree (ordered) ↵0 = J
(4)
0 /J0

Non-linearity degree (disordered) ↵ = J4/J .

I. HAMILTONIAN DERIVATION I

Electromagnetic energy

Eem =

Z
E

⇤(r, t) ·D(r, t) dV (7)

Electric displacement field

D(r) = ✏0✏r(r)E(r) + Pnl(r) (8)

No0ce*that*in*Random*Lasers*the*effect*of*lowering*the*T*is*shown*
to*be*experimentally*equivalent*to*raise*the*op0cal*power.**
D.*S.*Wiersma*and*S.*Cavalieri*(Nature*2001,*PRE*2002),**
Light(emission:(A(temperature1tunable(random(laser*
T.*Nakamura,*T.*Takahashi,*and*S.*Adachi*(PRB*2010),*
Temperature(dependence(of(GaAs(random(laser(characteris+cs(
(



Random lasers as 
complex disordered 
systems 
Luca Leuzzi

Since our ‘spins’ are not locally bounded we can define an 
intensity fluctuation overlap between replicas

5

Complex Langevin dynamics
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ȧn = �ı
@H

@a⇤n
+ ⌘n = ıJnan + ıJ4

X

!j�!k+!l=!n

aja
⇤
kal + ⌘n (29)

“Tlaser” =
T

✏2
(30)

q↵� =
1

N

X

k

a
↵
ka

⇤�
k (31)

s↵� =
1

N

X

k

a
↵
ka

�
k (32)

m↵ =
1

N

X

k

a
↵
k (33)

[1] C. Conti and L. Leuzzi, Phys. Rev. B 83, 134204 (2011).
[2] G. Hackenbroich, C. Viviescas, and F. Haake, Phys. Rev. A 68, 063805 (2003).
[3] C. Viviescas and G. Hackenbroich, Phys. Rev. A 67, 013805 (2003).
[4] L. Angelani, C. Conti, G. Ruocco, and F. Zamponi, Phys. Rev. B 74, 104207 (2006).
[5] L. Leuzzi, C. Conti, V. Folli, L. Angelani, and G. Ruocco, Phys. Rev. Lett. 102, 083901 (2009).
[6] T. M. Nieuwenhuizen, Phys. Rev. Lett. 74, 4289 (1995).
[7] A. Crisanti and L. Leuzzi, Phys. Rev. Lett. 93, 217203 (2004).
[8] A. Crisanti and L. Leuzzi, Phys. Rev. B 73, 014412 (2006).
[9] A. Crisanti and L. Leuzzi, Phys. Rev. B 75, 144301 (2007).

[10] A. Crisanti and L. Leuzzi, Nucl. Phys. B 870, 176 (2013).
[11] C. Conti and A. Fratalocchi, Nat. Physics 4, 794 (2008).
[12] J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, Nat. Photon. 3, 279 (2009).
[13] W. E. Lamb, Phys. Rev. 134, A1429 (1964).
[14] Murray Sargent III, Marlan O’Scully and Willis E. Lamb, Laser Physics (Addison Wesley Publishing Company, 1978).
[15] D. S. Wiersma and S. Cavalieri, Nature 414, 708 (2001).
[16] M. Leonetti and C. Conti, J. Opt. Soc. Am. 27, 1446 (2010).
[17] P. Meystre and M. Sargent III, Elements of Quantum Optics (Springer, 1998).
[18] More specifically, |!j � !k| < �!, for each j, k = 1, . . . , N , where �! is the line-width of the intensity spectrum. Indeed, in

most of RLs, it is not necessary that the resonant ML condition for having four modes interact is satisfied exactly [17].

This is the standard Parisi overlap in this model:

There is a one-to-one correspondence between elements of the 
standard (Parisi) overlap and IFO matrices 

In principle IFO can be experimentally measured

2

Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.

ȧn(t) = �ı
@H

@a⇤n
� µ an(t) + ⌘n(t) (2)

Fn[{a}|{J}] ' �ı
@

@a⇤n
H[{a}|{J}]� µ an(t) (3)

ak(!k) = Ak(!k)eı�k(!k)

Ik = |ak|2,�k = arg(ak)
{Ik,�k,!k}

I,�,!
J
Ik(t) = |ak(t)|2

hIk(t)i =
1
T

R t0+T

t0
dt Ik(t)

[? ? ]
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1
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1,NX

jk

Jjkaja
⇤

k �
1

4!

1,NX

jklm

Jjklmaja
⇤

kala
⇤

m , (4)

where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 = const (5)

q =
|m|

2

2
(6)

q =
|m|

2

2
+� (7)

Qab = q2ab �
|m|

4

4
(8)

Q = 0 (9)

Q = |m|
2�+�2 (10)

m =

p
2

N

NX

k=1

ak (11)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.

In the fully connected mean-field mixed spherical phasor model one proves 

An extra (useful) parameter: IFO
Intensity Fluctuation Overlap
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REPLICA SYMMETRY BREAKING

Element-element relation: any 
Replica Symmetry Breaking is 
detectable and measurable.

Mean-field 
fully connected theory

2

Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint
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ak (11)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
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Outline
• Standard and random lasers 
• Statistical physics approach to laser physics  

   Theory for ultrafast mode-locked multimode lasers  
   (order, closed cavity) 
   Theory for random lasers: a mode-locked spin-glass theory    
(disorder, open cavity)

• The narrow-band solution, phase diagrams, replica symmetry 
breaking, a new overlap: intensity fluctuation overlap  

• Intermezzo: the experimental measurement of the Parisi 
distribution of overlaps 

• In between theory and experiment: a mode-locking model  
   Monte Carlo dynamics simulation with exchange Monte Carlo, 
   GPU parallel computing 

• Power distribution among modes in the glassy light regime: 
condensation vs equipartition at high pumping 

• Outlook (work in progress) 
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• Intermezzo: the experimental measurement 
of the Parisi distribution of overlaps

Field Cooled 
Susceptibility

The RSB order parameter 
is the distribution of the overlap values

What is accessible to experiments?
Static susceptibility after cooling in zero magnetic field or in a field h

Nagata S, Keesom P and Harrison H, Phys. Rev. B 19 1633 (1979) 

CuMnh=5.9 G

Zero Field Cooled 
Susceptibility
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What hinders the whole P(q) measure?

We need microscopic configurations at equilibrium

Microscopic atomic spin configurations in spin glasses  
are hard to be measured

Equilibrium is hardly/never attained  
in experiments on spin-glasses
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the case of an Ising Hamiltonian quadratic in the spin
variables, the symmetry by reversal of all the spins im-
plies that the overlap distribution Psqd of the unperturbed
system is symmetric: Psqd ≠ Ps2qd, each pure state ap-
pearing with the same weight as its symmetric one in the
Gibbs measure. This symmetry will be violated by the
perturbation terms Hp with odd p, leading (in the absence
of further reshuffling) to the relation lime!01 Pesqd ;
P01 sqd ≠ 2usqdPsqd. Suppose now that care has been
taken of all the symmetries of the system, by defining a
modified P̂sqd measuring the distance between orbits of
the symmetry group. It is reasonable to believe that, for a
large class of systems, the reshuffling of the weights will
lift only the degeneracy, so that P̃sqd ≠ P̂sqd. We shall
refer to such systems as being stochastically stable. Mean
field spin-glasses fall into this category, as well as Ising
ferromagnets in dimensions d $ 2 [19], but we do not
know how to characterize this class in general. Turning to
the case of dynamics, it is trivial to show that the limit of
e ! 0 is smooth when it is taken before the limit of large
times (the infinite volume limit is always taken first). If
the limits commute, then the static X̃sqd ≠

Rq
0 dq0 P̃sq0d

is identical to the dynamical (FDR) Xsqd of the unper-
turbed system, measured with random initial spin con-
figurations. This result holds for Sherrington-Kirkpatrick
spin-glasses, but is violated, e.g., in p-spin spherical
spin-glass models, where the dynamics is dominated by
infinitely long-lived metastable states.
Summarizing, we have introduced a new order parame-

ter function for systems at equilibrium, which can be
related in general, in finite-dimensional systems, to the
FDR of a weakly perturbed system. This new order
parameter is interesting since its moments are obtained
as expectation values of extensive quantities. It is thus
much more robust than the usual overlap distribution,
and will not have the same chaotic behavior under weak
perturbations. It is interesting to notice that in mean
field spin-glasses, the order parameter appearing from
the replica computation is naturally related to this new
order parameter. For stochastically stable systems, this
new order parameter is equal to the overlap distribution
of symmetry classes of the states, and can be measured
experimentally. The relation implies that in any finite-
dimensional system replica-symmetry breaking and aging
in the response functions either appear together or do not
appear at all. Although we have used the language of
the magnetic systems, the arguments put forward here
can be generalized to systems of a different nature, using
different random perturbations of the Hamiltonian.
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by a “fluctuation-dissipation ratio” (FDR), which depends
on the relation between the two times involved [10,11].
This FDR can be found experimentally by simultaneous
measurements of the noise and the response on various
time scales and age scales.
The aim of this paper is twofold. We shall first

show that, in finite dimensional systems with short-
range interactions, there exists an identity relating the—
experimentally accessible—FDR to an equilibrium order
parameter function. This static order parameter function
is an interesting new object. We shall then discuss its
relationship to the usual distribution of overlaps. Our
argument relies on a perturbation of the original Hamil-
tonian by the addition of some weak—but thermody-
namic—random perturbations. This method has been
recently used to derive interesting properties of the over-
lap distribution at equilibrium [12,13].
We use the language of magnetic systems, and denote

by Sx the spin at a point x of a lattice of size Ld in d
dimensions. We work with classical spins which are real
variables in a double well potential, and the Ising limit
will often be considered for simplicity. We call HsSd
the Hamiltonian. Our argument is rather general, and we
do not have to specify much the Hamiltonian: it contains
short-range interactions, in a d dimensional space; it may
contain quenched disorder or not. The evolution of the
spin dynamics is governed by the Langevin equation at
temperature T

ŸSx ≠ 2
≠H
≠Sx

1 hx , (1)

where hx is a white noise of variance khxstdhyst0dl ≠
2Tdxydst 2 t0d. (We denote by angular brackets thermal
averages, i.e., either in the dynamic framework, the aver-
age with respect to the realization of the random noise,
or in the static framework, the average with respect to the
Gibbs measure.) The system starts at time t ≠ 0 from
a random initial condition. Important quantities are the
correlation function,Cst, t0d ≠ s1yNd

P
xkSxstdSxst0dl, and

the response function, which measures the response of the
spins at time t to an instantaneous field at time t0,

Rst, t0d ≠
1
N

X

x

dkSxstdl
dhxst0d

. (2)

The quantity which is measured experimentally (thermore-
manent magnetization) is the integrated response function,
defined by xst, t0d ≠ T

Rt0

0 dt00 Rst, t00d.
The FDR Xsqd is obtained by considering the infinite-

time limit of the response function, fixing the correlation
function Cst, t0d to a given value q [9–11],

Xsqd ≠ lim
t,t0!`

Cst,t0d≠q

≠xst, t0d
≠t0

,
≠Cst, t0d

≠t0
. (3)

The usual equilibrium dynamics is obtained by sending
the two times t, t0 to infinity while keeping their differ-
ence t ≠ t 2 t0 fixed. Then the correlation and response
functions, Cst, t0d and Rst, t0d, reach their equilibrium val-

ues, cstd and rstd. In short-range systems this regime
relates to the property of “local equilibrium,” i.e., to the
fact that any finite region of space reaches equilibrium
locally. The Edwards-Anderson order parameter is de-
fined dynamically by qEA ≠ limt!` cstd, and the usual
fluctuation-dissipation theorem asserts that, for q . qEA,
Xsqd ≠ 1. The aging regime concerns systems with weak
ergodicity breaking, such that the correlation Cst, t0d re-
laxes below qEA when t ! ` (at fixed t0) [14]. Then
the FDR Xsqd can become different from unity in the
regime q , qEA. Numerical measures of the FDR have
been performed in short-range spin-glasses, ferromagnets,
and structural glass models [15], through parametric plots
of the integrated response function versus the correlation
[5]. The ratio TyXsqd can be interpreted as an effective
temperature [16].
We wish to relate the FDR to an equilibrium order

parameter. Let us add to the original Hamiltonian a
perturbation of the form eH2, with

H2 ≠
X

x
hxSxST sxd , (4)

where the hx’s are independent Gaussian random vari-
ables of variance one, and T is a translation of length
Ly2 in a fixed direction e, say, the x axis [so that T sxd ≠
x 1 sLy2de]. The thermal expectation value of the per-
turbation kH2l is a contribution to the internal energy of
the system which is extensive and self-averaging, i.e., in-
dependent (in the thermodynamical limit) of the particular
realization of the disorder contained in either H or H2.
The interaction H2, which looks long range, is, in fact, a
local perturbation in a different space. Let us divide the
space into two halves (Sl and Sr) and rename the spins in
the right-hand part so that if x [ Sl then T sxd [ Sr and
ST sxd ≠ S0

x . The total Hamiltonian can now be written as

HsS, S0d ≠ HlsSd 1 Hr sS0d 1 BsS, S0d

1 e
X

x[Sl

hxSxS0
x . (5)

The Hamiltonian Hl and Hr refer, respectively, to the
spins in Sl and Sr . The term BsS, S0d is a surface term
whose presence does not affect the average of H2. Drop-
ping it, the Hamiltonian (5) characterizes a spin system
of size Ldy2, with two spins Sx , S0

x on each site, and a
purely local interaction. Notice that in the case of disor-
dered systems the spin systems S and S0 taken individu-
ally contain two independent realizations of the disorder.
Since the perturbation H2 is a sum of local terms, the

thermal expectation value (for almost all realizations of the
disorder) kH2stdlmeasured in the dynamics has a long-time
limit which is equal to its equilibrium expectation value.
The proof of this fact is standard for systems with short-
range interactions. We first notice that the free energy
density fstdmust reach, at long times, its equilibrium value
feq: if it were to converge to a value fs`d larger than the
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If the dynamic FDR can be measured in experiments 
and if the system is stochastically stable*
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*A reshuffling of pure states takes place in the (limit) procedure of the costruction of P(q) in 
presence of ergodicity breaking. If such reshuffling only lift the degeneracy due to 
symmetries of the system, then P(q) is the right distribution of the overlap.
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the case of an Ising Hamiltonian quadratic in the spin
variables, the symmetry by reversal of all the spins im-
plies that the overlap distribution Psqd of the unperturbed
system is symmetric: Psqd ≠ Ps2qd, each pure state ap-
pearing with the same weight as its symmetric one in the
Gibbs measure. This symmetry will be violated by the
perturbation terms Hp with odd p, leading (in the absence
of further reshuffling) to the relation lime!01 Pesqd ;
P01 sqd ≠ 2usqdPsqd. Suppose now that care has been
taken of all the symmetries of the system, by defining a
modified P̂sqd measuring the distance between orbits of
the symmetry group. It is reasonable to believe that, for a
large class of systems, the reshuffling of the weights will
lift only the degeneracy, so that P̃sqd ≠ P̂sqd. We shall
refer to such systems as being stochastically stable. Mean
field spin-glasses fall into this category, as well as Ising
ferromagnets in dimensions d $ 2 [19], but we do not
know how to characterize this class in general. Turning to
the case of dynamics, it is trivial to show that the limit of
e ! 0 is smooth when it is taken before the limit of large
times (the infinite volume limit is always taken first). If
the limits commute, then the static X̃sqd ≠

Rq
0 dq0 P̃sq0d

is identical to the dynamical (FDR) Xsqd of the unper-
turbed system, measured with random initial spin con-
figurations. This result holds for Sherrington-Kirkpatrick
spin-glasses, but is violated, e.g., in p-spin spherical
spin-glass models, where the dynamics is dominated by
infinitely long-lived metastable states.
Summarizing, we have introduced a new order parame-

ter function for systems at equilibrium, which can be
related in general, in finite-dimensional systems, to the
FDR of a weakly perturbed system. This new order
parameter is interesting since its moments are obtained
as expectation values of extensive quantities. It is thus
much more robust than the usual overlap distribution,
and will not have the same chaotic behavior under weak
perturbations. It is interesting to notice that in mean
field spin-glasses, the order parameter appearing from
the replica computation is naturally related to this new
order parameter. For stochastically stable systems, this
new order parameter is equal to the overlap distribution
of symmetry classes of the states, and can be measured
experimentally. The relation implies that in any finite-
dimensional system replica-symmetry breaking and aging
in the response functions either appear together or do not
appear at all. Although we have used the language of
the magnetic systems, the arguments put forward here
can be generalized to systems of a different nature, using
different random perturbations of the Hamiltonian.
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by a “fluctuation-dissipation ratio” (FDR), which depends
on the relation between the two times involved [10,11].
This FDR can be found experimentally by simultaneous
measurements of the noise and the response on various
time scales and age scales.
The aim of this paper is twofold. We shall first

show that, in finite dimensional systems with short-
range interactions, there exists an identity relating the—
experimentally accessible—FDR to an equilibrium order
parameter function. This static order parameter function
is an interesting new object. We shall then discuss its
relationship to the usual distribution of overlaps. Our
argument relies on a perturbation of the original Hamil-
tonian by the addition of some weak—but thermody-
namic—random perturbations. This method has been
recently used to derive interesting properties of the over-
lap distribution at equilibrium [12,13].
We use the language of magnetic systems, and denote

by Sx the spin at a point x of a lattice of size Ld in d
dimensions. We work with classical spins which are real
variables in a double well potential, and the Ising limit
will often be considered for simplicity. We call HsSd
the Hamiltonian. Our argument is rather general, and we
do not have to specify much the Hamiltonian: it contains
short-range interactions, in a d dimensional space; it may
contain quenched disorder or not. The evolution of the
spin dynamics is governed by the Langevin equation at
temperature T

ŸSx ≠ 2
≠H
≠Sx

1 hx , (1)

where hx is a white noise of variance khxstdhyst0dl ≠
2Tdxydst 2 t0d. (We denote by angular brackets thermal
averages, i.e., either in the dynamic framework, the aver-
age with respect to the realization of the random noise,
or in the static framework, the average with respect to the
Gibbs measure.) The system starts at time t ≠ 0 from
a random initial condition. Important quantities are the
correlation function,Cst, t0d ≠ s1yNd

P
xkSxstdSxst0dl, and

the response function, which measures the response of the
spins at time t to an instantaneous field at time t0,

Rst, t0d ≠
1
N

X

x

dkSxstdl
dhxst0d

. (2)

The quantity which is measured experimentally (thermore-
manent magnetization) is the integrated response function,
defined by xst, t0d ≠ T

Rt0

0 dt00 Rst, t00d.
The FDR Xsqd is obtained by considering the infinite-

time limit of the response function, fixing the correlation
function Cst, t0d to a given value q [9–11],

Xsqd ≠ lim
t,t0!`

Cst,t0d≠q

≠xst, t0d
≠t0

,
≠Cst, t0d

≠t0
. (3)

The usual equilibrium dynamics is obtained by sending
the two times t, t0 to infinity while keeping their differ-
ence t ≠ t 2 t0 fixed. Then the correlation and response
functions, Cst, t0d and Rst, t0d, reach their equilibrium val-

ues, cstd and rstd. In short-range systems this regime
relates to the property of “local equilibrium,” i.e., to the
fact that any finite region of space reaches equilibrium
locally. The Edwards-Anderson order parameter is de-
fined dynamically by qEA ≠ limt!` cstd, and the usual
fluctuation-dissipation theorem asserts that, for q . qEA,
Xsqd ≠ 1. The aging regime concerns systems with weak
ergodicity breaking, such that the correlation Cst, t0d re-
laxes below qEA when t ! ` (at fixed t0) [14]. Then
the FDR Xsqd can become different from unity in the
regime q , qEA. Numerical measures of the FDR have
been performed in short-range spin-glasses, ferromagnets,
and structural glass models [15], through parametric plots
of the integrated response function versus the correlation
[5]. The ratio TyXsqd can be interpreted as an effective
temperature [16].
We wish to relate the FDR to an equilibrium order

parameter. Let us add to the original Hamiltonian a
perturbation of the form eH2, with

H2 ≠
X

x
hxSxST sxd , (4)

where the hx’s are independent Gaussian random vari-
ables of variance one, and T is a translation of length
Ly2 in a fixed direction e, say, the x axis [so that T sxd ≠
x 1 sLy2de]. The thermal expectation value of the per-
turbation kH2l is a contribution to the internal energy of
the system which is extensive and self-averaging, i.e., in-
dependent (in the thermodynamical limit) of the particular
realization of the disorder contained in either H or H2.
The interaction H2, which looks long range, is, in fact, a
local perturbation in a different space. Let us divide the
space into two halves (Sl and Sr) and rename the spins in
the right-hand part so that if x [ Sl then T sxd [ Sr and
ST sxd ≠ S0

x . The total Hamiltonian can now be written as

HsS, S0d ≠ HlsSd 1 Hr sS0d 1 BsS, S0d

1 e
X

x[Sl

hxSxS0
x . (5)

The Hamiltonian Hl and Hr refer, respectively, to the
spins in Sl and Sr . The term BsS, S0d is a surface term
whose presence does not affect the average of H2. Drop-
ping it, the Hamiltonian (5) characterizes a spin system
of size Ldy2, with two spins Sx , S0

x on each site, and a
purely local interaction. Notice that in the case of disor-
dered systems the spin systems S and S0 taken individu-
ally contain two independent realizations of the disorder.
Since the perturbation H2 is a sum of local terms, the

thermal expectation value (for almost all realizations of the
disorder) kH2stdlmeasured in the dynamics has a long-time
limit which is equal to its equilibrium expectation value.
The proof of this fact is standard for systems with short-
range interactions. We first notice that the free energy
density fstdmust reach, at long times, its equilibrium value
feq: if it were to converge to a value fs`d larger than the
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2

Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.

ȧn(t) = �ı
@H

@a⇤n
� µ an(t) + ⌘n(t) (2)

Fn[{a}|{J}] ' �ı
@

@a⇤n
H[{a}|{J}]� µ an(t) (3)

ak(!k) = Ak(!k)eı�k(!k)

Ik = |ak|2,�k = arg(ak)
{Ik,�k,!k}

I,�,!
J
Ik(t) = |ak(t)|2

hIk(t)i =
1
T

R t0+T

t0
dt Ik(t)

[? ? ]

H = �
1

2

1,NX

jk

Jjkaja
⇤

k �
1

4!

1,NX

jklm

Jjklmaja
⇤

kala
⇤

m , (4)

where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 = const (5)

q =
|m|

2

2
(6)

q =
|m|

2

2
+� (7)

Qab = q2ab �
|m|

4

4
(8)

Q = 0 (9)

Q = |m|
2�+�2 (10)

m =

p
2

N

NX

k=1

ak (11)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.

F. Antenucci, A. Crisanti, LL, SciRep 2015

Fu
ll
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 R

SB
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Intensity Fluctuation Overlap
probability distribution in the 

Fully connected 2+4 spherical phasor model

RSB transition

2

|k1 � k2 + k3 � k4| = 0

Ik = |ak|2

H[a] = �
X

k|FMC(k)

Jk1k2k3k4ak1ak2ak3ak4 + c.c. = J1234a1a2a3a4 + J1235a1a2a3a5 + J1239a1a2a3a9 + . . .

|!i � !j + !k � !l| < �

= O(N3)

Tc = 0.61(3)
✓

N
4

◆
⇥
✓

2

3N
+

1

3N3

◆

P (Q)

H[a] = �J1234a1a2a3a4 =
1

O(N)
O(N2) = O(N)

H[a] = �J1234a1a2a3a4 =
1

O(N1/2)
O(N2) = O(N3/2) � O(N)

H[a] = �J1234a1a2a3a4 =
1

O(N3/2)
O(N2) = O(N1/2) ⌧ O(N)

H[a] = �J1234a1a2a3a4 =
1

O(N)
O(N2) = O(N)

min
a

H[a] = O(N)

{a} : |ak| 2 ⇤ /
p
N , |ak|��2 ⇤ = 0

{a} : |ak| ' 1 8 k = 1, . . . , N

NX

k=1

|ak|2
✏

= N

ak ! a0k ) �E ⌘ H[a0]�H[a]

O(N2)

�2
p = J2

k1...kp
/ 1

Np�2

�2
4 = J2

k1k2k3k4
/ 1

N

�2
4 = J2

k1k2k3k4
/ 1

N2

�2
4 = J2

k1k2k3k4
/ 1

N3

c ⇠ Np

c ⇠ Np�1

c ⇠ N<p�1

4

⇥N

Q↵� =
1

N

NX

k=1

⇣
|a(↵)k |2 �

⌦
|ak|2

↵⌘⇣
|a(�)k |2 �

⌦
|ak|2

↵⌘

Q↵� =
1

N

NX

k=1

⇣
|a(↵)k |2|a(�)k |2 �

⌦
|ak|2

↵2⌘

H[a] = �1

2

1,NX

n1n2
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The IFO can be measured in experiments

Why not directly the phasor overlap?
Phases are unknown
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Z 1
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dq q P (q) �FC = � (1� hqi) (31)

�ZFC = � (1� qEA) (32)

0.0.0.1 Espressione integrale della distribuzione cumulativa della distribuzione di Pois-

son. Scadenza 18/10 ore 15:00.

Utilizzando la definizione di Gamma di Eulero provare la seguente identità:
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N !

Z
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�

dx xN e�x , (33)

0.0.0.2 Dalla Binomiale alla Gaussiana usando solo la formula di Stirling. Scadenza

18/10 ore 15:00

Utilizzando la formula di Stirling dimostrare chela distribuzione binomiale B(2N,N +K, 1/2), con
K = �N, . . . , N tende ad una Gaussiana di media N e varianza N/2:

B(2N,N +K, 1/2) =
1

p
⇡N

e�K
2
/N (34)

We can only measure intensities on 
data acquisition intervals, i. e., 

averaged over the whole dynamics.
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?

Experimentally the same sample of random optical medium can be repeatedly illuminated by 
an external pumping laser under exactly the same conditions if the compound is solid 
(scatterers do not move between different random laser dynamics) and this implies that the 
mode-coupling random realization will be the same in different random laser dynamic stories.

Real replicas are feasible and in this cases, in principle
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Intensity Fluctuation Overlap - IFO
Fully connected 2+4 spherical phasor model
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• Intermezzo: the experimental measurement 
of the Parisi distribution of overlaps

If real replicas are feasible IFO’s can be measured in experiments
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�2
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The experimental intensity fluctuation of the shot (replica) α with respect to the 
average spectrum is 

and their overlap is
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These overlaps can be measured over many shots at fixed external pumping power 
and the procedure can be repeated at different external pumping powers across the 

lasing transition to see how their distribution behaves 
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Replica Symmetry Breaking is 
experimentally detected in IFO 
in the T5OCx Random Laser 

N Ghofraniha et al.,  
Nat. Commun. 6,  
6058 (2015)

T5OCx 
grains

• Intermezzo: the experimental measurement 
of the Parisi distribution of overlaps
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Element-element relation: any 
Replica Symmetry Breaking is 
detectable and it is  
experimentally detected in IFO 
in the T5OCx Random Laser 

first direct  measurement

Mean-field 
fully connected theory

2

Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint
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The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.

F. Antenucci, A. Crisanti, LL, SciRep 2015

N Ghofraniha et al.,  
Nat. Commun. 6,  
6058 (2015)

T5OCx 
grains

• Intermezzo: the experimental measurement 
of the Parisi distribution of overlaps
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Differences between mean-field theory 
on complete graph and experiments

Fully connected RSB theory
In the narrowband approximation mode-
locking does not play any role and the 
interaction graph is complete

In the thermodynamic limit of infinite 
number of modes
under constant energy and effective 
equilibrium assumptions and using an 
equilibrium ensemble of instantaneous 
modes

In experiments:
mode-locking is expected to occur 
and the interaction graph is 
unknown, as well as the magnitude 
of the couplings
the number of modes is finite and 
also their resolution
equilibration is not under control 
and we do not have access to 
instantaneous resonances but only to 
the total intensity acquired

The glassy random laser: replica symmetry breaking in the intensity

fluctuations of emission spectra

F. Antenucci
1,2

, A. Crisanti
2,3

and L. Leuzzi
1,2⇤

1
NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Laboratory, Rome, Piazzale A. Moro 2, I-00185, Roma, Italy

2
Dipartimento di Fisica, Università di Roma “Sapienza”, Piazzale A. Moro 2, I-00185, Roma, Italy

3
ISC-CNR, UOS Sapienza, Piazzale A. Moro 2, I-00185, Roma, Italy

(Dated: November 6, 2016)

The behavior of a newly introduced overlap parameter is analyzed, measuring the correlation

between intensity fluctuations of waves in random media in di↵erent physical regimes, with varying

amount of disorder and non-linearity. Its relationship is established to the standard Parisi overlap

order parameter in replica theory for spin-glasses. In the 2 + 4 spherical complex spin-glass

model, describing the onset and behavior of random lasers, replica symmetry breaking in the

intensity fluctuation overlap is shown to occur at high pumping or low temperature. This order

parameter identifies the laser transition in random media and describes its glassy nature in terms

of emission spectra data, the only data so far accessible in random laser measurements. The

theoretical analysis is, eventually, compared to recent intensity fluctuation overlap measurements

demonstrating the validity of the theory and providing a straightforward interpretation of di↵erent

spectral behaviors in di↵erent random lasers. (142 words < 200/< 150)

Introduction Modes are expressed as slow amplitude

contributions to the electromagnetic field expansion in
terms of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn
out to be the fundamental degree of freedom in the sta-
tistical mechanical modeling of interacting modes [? ?
], while the irregularity of their spatial profiles results
into quenched disordered mode interactions. By quenched
we mean that the interaction strengths are time indepen-
dent [? ], as it occurs, in practice, when they change on
time-scales much longer then the typical amplification
time-scales, possibly longer than the RL lifetime itself.
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where the sums are unrestricted and ai are N complex
amplitude variables subject to the global power con-
straint E = ✏N =

P
k |ak|

2. The coupling strengths are
here quenched independent random variables with mean

J (2)
0 /Np�1 and variance p! J2

p/(2N
p�1) (p = 2, 4), whose

scaling with N guarantee an extensive Hamiltonian and
thermodynamic convergence. The corresponding prob-
ability distribution can be taken Gaussian without, for
large N , loss of generality. Let us also define the degree

of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0

with J0 = J (2)
0 + J (4)

0 and J = J2 + J4 and where � is the
inverse temperature associated with the noise.
This model can be derived in a multimode laser the-

ory for open and irregular random resonators [? ]. The
openness of the cavity can be encoded into the definition
of the electromagnetic modes using, e.g., the system-and-
bath approach of Ref. [? ], in which the contributions of
radiative and localized modes are separated by Feshbach
projection [? ] onto two orthogonal subspaces. This
leads to an e↵ective theory on the subspace of localized
modes in which they exchange a linear o↵-diagonal ef-
fective damping coupling [? ? ? ]. In terms of the
interaction parameters, we also define the strength of the
openness as the inverse strength of the nonlinear inter-
action coupling with respect to the o↵-diagonal linear

coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity

the linear dumping is absent and it corresponds to ↵ = 1.
In a standard semiclassical approach, the field is ex-

pressed in the slow amplitude basis, equation (1), where
each mode has a defined frequency. The lifetimes of these
modes are assumed to be much longer than the charac-
teristic times of population inversion and amplification
processes, so that the atomic variables can be adiabatically
removed and result in an e↵ective interaction between
the electromagnetic modes. The nonlinear couplings are
indeed nonzero only for the terms aja⇤kala

⇤

m that meet
the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (3)

� being the finite linewidth of the modes.
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The behavior of a newly introduced overlap parameter is analyzed, measuring the correlation

between intensity fluctuations of waves in random media in di↵erent physical regimes, with varying

amount of disorder and non-linearity. Its relationship is established to the standard Parisi overlap

order parameter in replica theory for spin-glasses. In the 2 + 4 spherical complex spin-glass

model, describing the onset and behavior of random lasers, replica symmetry breaking in the

intensity fluctuation overlap is shown to occur at high pumping or low temperature. This order

parameter identifies the laser transition in random media and describes its glassy nature in terms

of emission spectra data, the only data so far accessible in random laser measurements. The

theoretical analysis is, eventually, compared to recent intensity fluctuation overlap measurements

demonstrating the validity of the theory and providing a straightforward interpretation of di↵erent

spectral behaviors in di↵erent random lasers. (142 words < 200/< 150)
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The complex amplitudes ak(t) of these slow modes turn
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tistical mechanical modeling of interacting modes [? ?
], while the irregularity of their spatial profiles results
into quenched disordered mode interactions. By quenched
we mean that the interaction strengths are time indepen-
dent [? ], as it occurs, in practice, when they change on
time-scales much longer then the typical amplification
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where the sums are unrestricted and ai are N complex
amplitude variables subject to the global power con-
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2. The coupling strengths are
here quenched independent random variables with mean
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p�1) (p = 2, 4), whose

scaling with N guarantee an extensive Hamiltonian and
thermodynamic convergence. The corresponding prob-
ability distribution can be taken Gaussian without, for

large N , loss of generality. Let us also define the degree
of disorder RJ = J0/J and the pumping rate P = ✏

p
�J0

with J0 = J (2)
0 + J (4)

0 and J = J2 + J4 and where � is the
inverse temperature associated with the noise.

This model can be derived in a multimode laser the-
ory for open and irregular random resonators [? ]. The
openness of the cavity can be encoded into the definition
of the electromagnetic modes using, e.g., the system-and-
bath approach of Ref. [? ], in which the contributions of
radiative and localized modes are separated by Feshbach
projection [? ] onto two orthogonal subspaces. This
leads to an e↵ective theory on the subspace of localized
modes in which they exchange a linear o↵-diagonal ef-
fective damping coupling [? ? ? ]. In terms of the
interaction parameters, we also define the strength of the
openness as the inverse strength of the nonlinear inter-
action coupling with respect to the o↵-diagonal linear

coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity

the linear dumping is absent and it corresponds to ↵ = 1.

In a standard semiclassical approach, the field is ex-
pressed in the slow amplitude basis, equation (1), where
each mode has a defined frequency. The lifetimes of these
modes are assumed to be much longer than the charac-
teristic times of population inversion and amplification
processes, so that the atomic variables can be adiabatically
removed and result in an e↵ective interaction between
the electromagnetic modes. The nonlinear couplings are
indeed nonzero only for the terms aja⇤kala

⇤

m that meet
the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (3)

� being the finite linewidth of the modes.

• In between theory and experiment 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Outline
• Standard and random lasers 
• Statistical physics approach to laser physics  

   Theory for ultrafast mode-locked multimode lasers  
   (order, closed cavity) 
   Theory for random lasers: a mode-locked spin-glass theory    
(disorder, open cavity)

• The narrow-band solution, phase diagrams, replica symmetry 
breaking, a new overlap: intensity fluctuation overlap  

• Intermezzo: the experimental measurement of the Parisi 
distribution of overlaps 

• In between theory and experiment: a mode-locking model  
   Monte Carlo dynamics simulation with exchange Monte Carlo, 
   GPU parallel computing 

• Power distribution among modes in the glassy light regime: 
condensation vs equipartition at high pumping 

• Outlook (work in progress) 
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We include mode frequencies and frequency matching for a more realistic model
We also simplify some (momentarily less essential) features:
* only 4-“spins” (no losses, flat gain profile)
* comb-like distributed frequencies (easier combinatorics)

Intensity pseudo-localized phase in the glassy random laser
J.S

tat.
M
ech.(2023)

053302
with the RSB transition point, in the numerical uncertainty of the finite size scaling
for the simulated systems. We will show that a fundamental issue in the occurrence of
localization or pseudo-localization of intensity in the low temperature/high pumping
phase is the connectivity of the nonlinear mode interaction.

2. Model and objectives

The leading model for the mode-locking random laser is [2, 25, 50, 51]

H[a] =−
∑

k|FMC(k)

Jk1k2k3k4ak1ak2ak3ak4 + c.c., (1)

where the ‘spins’ ak are the complex amplitudes of the light modes of angular frequency
ωk , satisfying the global ‘spherical’ constraint

∑

k

|ak|2 = E = εN, (2)

where ε= E/N is the optical power per mode available in the system and the quenched
disordered couplings Jk1k2k3k4 are distributed according to

P(Jk1k2k3k4) =
1√
2πσ2

4

exp
{
−
J2
k1k2k3k4

2σ2
4

}
, (3)

where

σ2
4 =

4!J2
4

2N 2
. (4)

The modes involved in each interaction term must satisfy the frequency matching
condition (FMC)

FMC(k) : |ωk1 −ωk2 +ωk3 −ωk4|! γ, (5)

where γ is the single mode linewidth. In the simulated system the mode frequencies are
chosen according to the simplifying scheme of being ‘comb-like’ distributed,

ωk = ω0 + δω k, (6)

so that the FMC conditions simply read as

|k1− k2 + k3− k4|= 0 ,ki = 1, . . . ,N. (7)

At difference with the model studied in [25] we impose periodic boundary conditions
(PBCs) on the mode-frequencies, i.e. given any two mode indices ka and kb their distance
will be

https://doi.org/10.1088/1742-5468/acd2c4 5
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 (5)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)

SciPost Phys. 14, 144 (2023)

apparently occurs in glassy random lasers, modes are spatially extended to wide regions of
the optically active compound, each mode is nonlinearly interacting with very many others.
We will implement such an “extended modes approximation” [58] in our model, where the
only relevant factor in the mode-coupling is the FMC, rather than spatial confinement of light
modes. In this case, because of thermodynamic convergence, each coupling coefficient will be
smaller and smaller as the number of modes increases.

In principle, all couplings involving the same mode will be correlated. However, because
of the spatially etherogeneous optical nonlinear susceptibility in (6) and the fact that each
coupling coefficient vanishes as N increases, the role of correlation will be qualitatively negli-
gible as far as the system displays enough modes. For this reason, the couplings will be taken
as independent Gaussian random variables in the present work:

P(Jk1···kp
) =

1q
2⇡�2

p

exp

(
�

J2
k1···kp

2�2
p

)
, (12)

with p = 2,4 and �2
p ⇠ N2�p to ensure the extensivity of the Hamiltonian and where some

rescaling of the modes and coefficients (g ! J) has been performed [34,41]. Eventually, the
stationary properties of the system can be described by a model whose Hamiltonian is

H[a] =H2[a] +H4[a] , (13)

where
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As mentioned in section II when introducing the dissipative limit we will consider the J ’s as real
parameters, without loss of generality. The effective distribution for the phasor configuration
a = {a1, . . . , aN} will, eventually, be

P[a] / e��H[a]�
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, (15)

where � is the inverse temperature.

3 Frequency Matching Condition without edge-band modes

The FMC Eq. (4) is the most peculiar aspect of the ML 4-phasor model, since it defines the
topology of the interaction network. The full inclusion of the FMC in the study of the model
has not been achieved analytically yet, given the difficulty of the problem. The analytical so-
lution of the ML (2+4)-phasor model has been derived only in the narrow bandwidth approx-
imation, in which the interaction network is a fully connected graph. In this approximation,
the typical bandwidth � of the modes is of the order of the spectrum bandwidth �! and the
FMC is satisfied by all the modes. To include the FMC means to go beyond the fully connected
case, which requires the development of new techniques with respect to standard mean-field
methods. However, numerical simulations can yield important insights on the nature of the
model.

Besides being relevant from a purely theoretical point of view, dealing with the FMC is also
important in order to provide a realistic description of random lasers. The FMC is, indeed,
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a mode-locking model 
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We include mode frequencies and frequency matching for a more realistic model
We also simplify some (momentarily less essential) features:
* only 4-“spins” (no losses, flat gain profile)
* comb-like distributed frequencies (easier combinatorics)
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with the RSB transition point, in the numerical uncertainty of the finite size scaling
for the simulated systems. We will show that a fundamental issue in the occurrence of
localization or pseudo-localization of intensity in the low temperature/high pumping
phase is the connectivity of the nonlinear mode interaction.

2. Model and objectives

The leading model for the mode-locking random laser is [2, 25, 50, 51]

H[a] =−
∑

k|FMC(k)

Jk1k2k3k4ak1ak2ak3ak4 + c.c., (1)

where the ‘spins’ ak are the complex amplitudes of the light modes of angular frequency
ωk , satisfying the global ‘spherical’ constraint

∑

k

|ak|2 = E = εN, (2)

where ε= E/N is the optical power per mode available in the system and the quenched
disordered couplings Jk1k2k3k4 are distributed according to

P(Jk1k2k3k4) =
1√
2πσ2

4

exp
{
−
J2
k1k2k3k4

2σ2
4

}
, (3)

where

σ2
4 =

4!J2
4

2N 2
. (4)

The modes involved in each interaction term must satisfy the frequency matching
condition (FMC)

FMC(k) : |ωk1 −ωk2 +ωk3 −ωk4|! γ, (5)

where γ is the single mode linewidth. In the simulated system the mode frequencies are
chosen according to the simplifying scheme of being ‘comb-like’ distributed,

ωk = ω0 + δω k, (6)

so that the FMC conditions simply read as

|k1− k2 + k3− k4|= 0 ,ki = 1, . . . ,N. (7)

At difference with the model studied in [25] we impose periodic boundary conditions
(PBCs) on the mode-frequencies, i.e. given any two mode indices ka and kb their distance
will be
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occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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smaller and smaller as the number of modes increases.
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topology of the interaction network. The full inclusion of the FMC in the study of the model
has not been achieved analytically yet, given the difficulty of the problem. The analytical so-
lution of the ML (2+4)-phasor model has been derived only in the narrow bandwidth approx-
imation, in which the interaction network is a fully connected graph. In this approximation,
the typical bandwidth � of the modes is of the order of the spectrum bandwidth �! and the
FMC is satisfied by all the modes. To include the FMC means to go beyond the fully connected
case, which requires the development of new techniques with respect to standard mean-field
methods. However, numerical simulations can yield important insights on the nature of the
model.

Besides being relevant from a purely theoretical point of view, dealing with the FMC is also
important in order to provide a realistic description of random lasers. The FMC is, indeed,
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responsible for mode-locking [40] at the lasing transition. Mode-locking is the regime under
which a standard multimode laser generates ultrashort pulses, due to the formation of phase
waves of nontrivial slope [54]. In random lasers the mode couplings are non-perturbatively
disordered disrupting the onset of a laser pulse. However, the underlying phenomenon of
phase locking might still be present, though as a self-starting phenomenon [41] rather than
induced by ad hoc devices as in standard mode-locking lasers [40].

Frequencies are, in principle, not equispaced in random lasers and their convolution would
prevent the onset of pulses in time even in presence of unfrustrated couplings. Since, however,
because of quenched disorder in the couplings no pulse is there notwithstanding the distribu-
tion of the mode frequencies, we consider here for simplicity a frequency-comb distribution:

!k =!1 + (k� 1)�! , k = 1, ..., N , (16)

with �⌧ �! and the central frequency given by !0 '!1 + N�!/2.
We note that in this case the linear term of the complete Hamiltonian Eq. (13) is diagonal.

If we assume that the diagonal part of the pairwise couplings does not depend on the modes,
together with the spherical constraint Eq. (11), this term is an irrelevant additive constant.
The diagonal part of the linear contribution to the Hamiltonian physically represents the gain
profile of the optical random medium (possibly becoming a random laser at high pumping). As
a working hypothesis we are assuming a uniform gain profile over the whole spectrum. For the
numerical simulations of this work, then, we have sampled configurations of the light modes
according to the equilibrium probability distribution in Eq. (15) with H = H4 the four-body
term defined in Eq. (14). Due to FMC the only non zero contribution to H4[a] comes from
the frequencies which fulfill the constraint (1). More notably, with Eq. (16) the condition (1)
on the frequencies can be mapped into a condition on the indices of the interaction graph

|k1 � k2 + k3 � k4|= 0 . (17)

The FMC in Eq. (17) tends to cut order O(N) interacting quadruplets with respect to the
complete graph [50]. Therefore, the total amount of couplings in the network is O(N3) and
each phasor spin in the system will be interacting in O(N2) quadruplets. Though diluted with
respect to the complete graph, the network is still dense.

The FMC also introduces non-linear correlations in the interactions affecting the topology
of the interaction network. Modes with more similar frequencies are connected by a higher
number of quadruplets and, consequently, they are effectively more coupled. As a conse-
quence, modes whose frequencies are at the center of the spectrum (! '!0) tend to interact
more than modes whose frequencies are at the boundaries (! '!1 or ! '!1+N�!). This
can be clearly seen in the emission spectrum Ik resulting from the numerical simulations for
a given fixed instance of the disorder, which is shown in Fig. 1. Data are obtained using the
Monte Carlo Exchange algorithm, also known as Parallel Tempering, allowing to reach equi-
librium on relatively short simulation times. All observables analyzed here are drawn from
configurations at equilibrium. All details about the numerical simulation algorithm and the
computation of the equilibrium thermal averages are discussed in App. A.

Let us briefly comment on the relationship between the physical intensities Ik and the
complex amplitude variables of the simulated model (14). In real experiments the heat bath
temperature T is typically kept fixed (there are exceptions like, e.g., in Ref. [59]) and the
overall system energy E = ✏N is varied by tuning the pumping power. In our simulations, ✏ is
fixed and kept equal to one in the spherical constraint,

P
k |ak|2 =
P

k A2
k = N , whereas T is

varied. Therefore, according to Eq. (10) a change in the pumping rate P because of a shift
in the energy ✏ pumped into the system corresponds to a shift of 1/

p
T . If we rescale the

8
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responsible for mode-locking [40] at the lasing transition. Mode-locking is the regime under
which a standard multimode laser generates ultrashort pulses, due to the formation of phase
waves of nontrivial slope [54]. In random lasers the mode couplings are non-perturbatively
disordered disrupting the onset of a laser pulse. However, the underlying phenomenon of
phase locking might still be present, though as a self-starting phenomenon [41] rather than
induced by ad hoc devices as in standard mode-locking lasers [40].

Frequencies are, in principle, not equispaced in random lasers and their convolution would
prevent the onset of pulses in time even in presence of unfrustrated couplings. Since, however,
because of quenched disorder in the couplings no pulse is there notwithstanding the distribu-
tion of the mode frequencies, we consider here for simplicity a frequency-comb distribution:

!k =!1 + (k� 1)�! , k = 1, ..., N , (16)

with �⌧ �! and the central frequency given by !0 '!1 + N�!/2.
We note that in this case the linear term of the complete Hamiltonian Eq. (13) is diagonal.

If we assume that the diagonal part of the pairwise couplings does not depend on the modes,
together with the spherical constraint Eq. (11), this term is an irrelevant additive constant.
The diagonal part of the linear contribution to the Hamiltonian physically represents the gain
profile of the optical random medium (possibly becoming a random laser at high pumping). As
a working hypothesis we are assuming a uniform gain profile over the whole spectrum. For the
numerical simulations of this work, then, we have sampled configurations of the light modes
according to the equilibrium probability distribution in Eq. (15) with H = H4 the four-body
term defined in Eq. (14). Due to FMC the only non zero contribution to H4[a] comes from
the frequencies which fulfill the constraint (1). More notably, with Eq. (16) the condition (1)
on the frequencies can be mapped into a condition on the indices of the interaction graph

|k1 � k2 + k3 � k4|= 0 . (17)

The FMC in Eq. (17) tends to cut order O(N) interacting quadruplets with respect to the
complete graph [50]. Therefore, the total amount of couplings in the network is O(N3) and
each phasor spin in the system will be interacting in O(N2) quadruplets. Though diluted with
respect to the complete graph, the network is still dense.

The FMC also introduces non-linear correlations in the interactions affecting the topology
of the interaction network. Modes with more similar frequencies are connected by a higher
number of quadruplets and, consequently, they are effectively more coupled. As a conse-
quence, modes whose frequencies are at the center of the spectrum (! '!0) tend to interact
more than modes whose frequencies are at the boundaries (! '!1 or ! '!1+N�!). This
can be clearly seen in the emission spectrum Ik resulting from the numerical simulations for
a given fixed instance of the disorder, which is shown in Fig. 1. Data are obtained using the
Monte Carlo Exchange algorithm, also known as Parallel Tempering, allowing to reach equi-
librium on relatively short simulation times. All observables analyzed here are drawn from
configurations at equilibrium. All details about the numerical simulation algorithm and the
computation of the equilibrium thermal averages are discussed in App. A.

Let us briefly comment on the relationship between the physical intensities Ik and the
complex amplitude variables of the simulated model (14). In real experiments the heat bath
temperature T is typically kept fixed (there are exceptions like, e.g., in Ref. [59]) and the
overall system energy E = ✏N is varied by tuning the pumping power. In our simulations, ✏ is
fixed and kept equal to one in the spherical constraint,

P
k |ak|2 =
P

k A2
k = N , whereas T is

varied. Therefore, according to Eq. (10) a change in the pumping rate P because of a shift
in the energy ✏ pumped into the system corresponds to a shift of 1/

p
T . If we rescale the
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Figure 1: Intensity spectrum Ik, Eq. (18), for a single realization of quenched disorder
of the ML 4-phasor model with free boundary conditions on the frequencies and
N = 120 modes. Temperature T 2 [0.7, 1.45] (color map on the vertical bar). Notice
the narrowing of the central part of the spectrum, because of FMC and the onset of
isolated spikes as T decreases, signaling breaking of intensity equipartition. The
pattern of the peaks is disordered and strongly depends on the random sample and
on the single dynamic history.

intensity of the mode k as

Ik =
A2

kp
T

, (18)

we have
P

k Ik = N/
p

T = N✏, as in Eq. (11).
One of the most relevant features of the intensity spectrum shown in Fig. 1 is that it be-

comes more and more structured and heterogeneous upon decreasing the temperature. A first
analysis of this phenomenon in terms of intensity equipartition breaking among the different
modes has been performed in [39], and a deepening of the collective inhomogeneous behavior
of the modes is presented in [60]. Another interesting feature of the spectrum is the central
band narrowing, akin to the spectra of true experimental realizations of random lasers [2,3].
This is a consequence of the fact that band-edge modes are less interacting and, as far as
numerical simulations are concerned, is one of the reasons why this sort of simulations are
plagued by strong finite-size effects.

In order to reduce these finite-size effects we have imposed periodic boundary conditions
on the frequencies when filtering couplings with the FMC condition. This has the effect of
eliminating band-edge modes, or, equivalently, it is like considering only modes at the center
of the spectrum in a much larger system. The periodic boundary conditions of the frequencies
are obtained in practice by representing the frequency indices as variables on a ring, see Fig.
2, and taking their distance as the smallest one between any two of them:

|ka � kb|=

8
<
:

|ka � kb| if |ka � kb|
⇥N

2

⇤

N � |ka � kb| if |ka � kb|�
⇥N

2

⇤ ,

(19)
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In the standard laser case the linear couplings are diagonal and the non-linear ones can be
safely considered as constant: in this case, Dk is the group velocity dispersion coefficient and
� is the self-phase modulation coefficient, responsible for the Kerr effect [40]. In the purely
dissipative limit [34,37], i.e. Dk1k2

⌧ Gk1k2
and �k1k2k3k4

⌧ �k1k2k3k4
, which in standard laser

theory corresponds to neglect the group velocity dispersion and the Kerr effect, the dynamics
of Eq. (2) becomes a potential differential equation

dak1

d t
= � @H[a]
@ ak1

(t)
+⌘k1

(t) ,

with a Hamiltonian function given by

H = �
X

k|FMC(k)

Gk1k2
ak1

ak2
�
X

k|FMC(k)

�k1k2k3k4
ak1

ak2
ak3

ak4
+ c.c. (9)

In principle, the noise is correlated, i.e. h⌘k1
⌘k2
i 6= �k1k2

. However, it can be diagonalized
by changing basis of dynamic variables: the decomposition of resonator modes into a slow
amplitude basis is not unique [57] and one can use this freedom to build a basis in which the
noise has no correlations. The diagonalization of the noise can be done at the cost of having
non-diagonal linear interactions, which is not a real complication in the random laser case,
since linear couplings already have off-diagonal contributions accounting for the openness of
the cavity.

The laser dynamics is brought to stationarity by gain saturation, a phenomenon connected
to the fact that, as the power is kept constant, the emitting atoms periodically decade in lower
states saturating the gain of the laser. In the same way the dynamics induced by the Hamil-
tonian Eq. (9) eventually reaches a stationary regime, when a constraint on the total energy
contained in the system is added. This argument was first proposed for standard multimode
lasers in Refs [37, 56]. In fact, lasers are strongly out of equilibrium: energy is constantly
pumped into the system in order to keep population inversion and stimulated emission, and in
the case of cavityless systems also compensate the leakages. However, a stationary regime can
be described as if the system is at equilibrium with an effective thermal bath, whose effective
temperature (a “photonic” temperature) accounts both for the amount of energy E = ✏N stored
into the system because of the external pumping and for the spontaneous emission rate. The
latter is proportional to the kinetic energy of the atoms, e. g., to the heat bath temperature T .
Eventually, the external parameter driving the lasing transition turns out to be [33,34,49]

Tphotonic =
T
✏2

. (10)

One can also introduce the pumping rate P [41] as the inverse of the square root of this ratio:

P2 =
✏2

T
=

1
T photonic

.

In order to mathematically model the gain saturation, an overall spherical constraint can
be imposed on the amplitudes fixing the total optical intensity in the system

NX

k=1

|ak|2 = ✏N . (11)

The precise value of the couplings in the Hamiltonian Eq. (9) requires the knowledge of
the spatial wavefunctions of the modes, see Eqs. (5) and (6), which is not available in random
lasers, since they are characterized by a complicated spatial structure of the modes. If, as it
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responsible for mode-locking [40] at the lasing transition. Mode-locking is the regime under
which a standard multimode laser generates ultrashort pulses, due to the formation of phase
waves of nontrivial slope [54]. In random lasers the mode couplings are non-perturbatively
disordered disrupting the onset of a laser pulse. However, the underlying phenomenon of
phase locking might still be present, though as a self-starting phenomenon [41] rather than
induced by ad hoc devices as in standard mode-locking lasers [40].

Frequencies are, in principle, not equispaced in random lasers and their convolution would
prevent the onset of pulses in time even in presence of unfrustrated couplings. Since, however,
because of quenched disorder in the couplings no pulse is there notwithstanding the distribu-
tion of the mode frequencies, we consider here for simplicity a frequency-comb distribution:

!k =!1 + (k� 1)�! , k = 1, ..., N , (16)

with �⌧ �! and the central frequency given by !0 '!1 + N�!/2.
We note that in this case the linear term of the complete Hamiltonian Eq. (13) is diagonal.

If we assume that the diagonal part of the pairwise couplings does not depend on the modes,
together with the spherical constraint Eq. (11), this term is an irrelevant additive constant.
The diagonal part of the linear contribution to the Hamiltonian physically represents the gain
profile of the optical random medium (possibly becoming a random laser at high pumping). As
a working hypothesis we are assuming a uniform gain profile over the whole spectrum. For the
numerical simulations of this work, then, we have sampled configurations of the light modes
according to the equilibrium probability distribution in Eq. (15) with H = H4 the four-body
term defined in Eq. (14). Due to FMC the only non zero contribution to H4[a] comes from
the frequencies which fulfill the constraint (1). More notably, with Eq. (16) the condition (1)
on the frequencies can be mapped into a condition on the indices of the interaction graph

|k1 � k2 + k3 � k4|= 0 . (17)

The FMC in Eq. (17) tends to cut order O(N) interacting quadruplets with respect to the
complete graph [50]. Therefore, the total amount of couplings in the network is O(N3) and
each phasor spin in the system will be interacting in O(N2) quadruplets. Though diluted with
respect to the complete graph, the network is still dense.

The FMC also introduces non-linear correlations in the interactions affecting the topology
of the interaction network. Modes with more similar frequencies are connected by a higher
number of quadruplets and, consequently, they are effectively more coupled. As a conse-
quence, modes whose frequencies are at the center of the spectrum (! '!0) tend to interact
more than modes whose frequencies are at the boundaries (! '!1 or ! '!1+N�!). This
can be clearly seen in the emission spectrum Ik resulting from the numerical simulations for
a given fixed instance of the disorder, which is shown in Fig. 1. Data are obtained using the
Monte Carlo Exchange algorithm, also known as Parallel Tempering, allowing to reach equi-
librium on relatively short simulation times. All observables analyzed here are drawn from
configurations at equilibrium. All details about the numerical simulation algorithm and the
computation of the equilibrium thermal averages are discussed in App. A.

Let us briefly comment on the relationship between the physical intensities Ik and the
complex amplitude variables of the simulated model (14). In real experiments the heat bath
temperature T is typically kept fixed (there are exceptions like, e.g., in Ref. [59]) and the
overall system energy E = ✏N is varied by tuning the pumping power. In our simulations, ✏ is
fixed and kept equal to one in the spherical constraint,

P
k |ak|2 =
P

k A2
k = N , whereas T is

varied. Therefore, according to Eq. (10) a change in the pumping rate P because of a shift
in the energy ✏ pumped into the system corresponds to a shift of 1/

p
T . If we rescale the

8
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Figure 1: Intensity spectrum Ik, Eq. (18), for a single realization of quenched disorder
of the ML 4-phasor model with free boundary conditions on the frequencies and
N = 120 modes. Temperature T 2 [0.7, 1.45] (color map on the vertical bar). Notice
the narrowing of the central part of the spectrum, because of FMC and the onset of
isolated spikes as T decreases, signaling breaking of intensity equipartition. The
pattern of the peaks is disordered and strongly depends on the random sample and
on the single dynamic history.

intensity of the mode k as

Ik =
A2

kp
T

, (18)

we have
P

k Ik = N/
p

T = N✏, as in Eq. (11).
One of the most relevant features of the intensity spectrum shown in Fig. 1 is that it be-

comes more and more structured and heterogeneous upon decreasing the temperature. A first
analysis of this phenomenon in terms of intensity equipartition breaking among the different
modes has been performed in [39], and a deepening of the collective inhomogeneous behavior
of the modes is presented in [60]. Another interesting feature of the spectrum is the central
band narrowing, akin to the spectra of true experimental realizations of random lasers [2,3].
This is a consequence of the fact that band-edge modes are less interacting and, as far as
numerical simulations are concerned, is one of the reasons why this sort of simulations are
plagued by strong finite-size effects.

In order to reduce these finite-size effects we have imposed periodic boundary conditions
on the frequencies when filtering couplings with the FMC condition. This has the effect of
eliminating band-edge modes, or, equivalently, it is like considering only modes at the center
of the spectrum in a much larger system. The periodic boundary conditions of the frequencies
are obtained in practice by representing the frequency indices as variables on a ring, see Fig.
2, and taking their distance as the smallest one between any two of them:
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In the standard laser case the linear couplings are diagonal and the non-linear ones can be
safely considered as constant: in this case, Dk is the group velocity dispersion coefficient and
� is the self-phase modulation coefficient, responsible for the Kerr effect [40]. In the purely
dissipative limit [34,37], i.e. Dk1k2

⌧ Gk1k2
and �k1k2k3k4

⌧ �k1k2k3k4
, which in standard laser

theory corresponds to neglect the group velocity dispersion and the Kerr effect, the dynamics
of Eq. (2) becomes a potential differential equation

dak1

d t
= � @H[a]
@ ak1

(t)
+⌘k1

(t) ,

with a Hamiltonian function given by

H = �
X

k|FMC(k)

Gk1k2
ak1

ak2
�
X

k|FMC(k)

�k1k2k3k4
ak1

ak2
ak3

ak4
+ c.c. (9)

In principle, the noise is correlated, i.e. h⌘k1
⌘k2
i 6= �k1k2

. However, it can be diagonalized
by changing basis of dynamic variables: the decomposition of resonator modes into a slow
amplitude basis is not unique [57] and one can use this freedom to build a basis in which the
noise has no correlations. The diagonalization of the noise can be done at the cost of having
non-diagonal linear interactions, which is not a real complication in the random laser case,
since linear couplings already have off-diagonal contributions accounting for the openness of
the cavity.

The laser dynamics is brought to stationarity by gain saturation, a phenomenon connected
to the fact that, as the power is kept constant, the emitting atoms periodically decade in lower
states saturating the gain of the laser. In the same way the dynamics induced by the Hamil-
tonian Eq. (9) eventually reaches a stationary regime, when a constraint on the total energy
contained in the system is added. This argument was first proposed for standard multimode
lasers in Refs [37, 56]. In fact, lasers are strongly out of equilibrium: energy is constantly
pumped into the system in order to keep population inversion and stimulated emission, and in
the case of cavityless systems also compensate the leakages. However, a stationary regime can
be described as if the system is at equilibrium with an effective thermal bath, whose effective
temperature (a “photonic” temperature) accounts both for the amount of energy E = ✏N stored
into the system because of the external pumping and for the spontaneous emission rate. The
latter is proportional to the kinetic energy of the atoms, e. g., to the heat bath temperature T .
Eventually, the external parameter driving the lasing transition turns out to be [33,34,49]

Tphotonic =
T
✏2

. (10)

One can also introduce the pumping rate P [41] as the inverse of the square root of this ratio:

P2 =
✏2

T
=

1
T photonic

.

In order to mathematically model the gain saturation, an overall spherical constraint can
be imposed on the amplitudes fixing the total optical intensity in the system

NX

k=1

|ak|2 = ✏N . (11)

The precise value of the couplings in the Hamiltonian Eq. (9) requires the knowledge of
the spatial wavefunctions of the modes, see Eqs. (5) and (6), which is not available in random
lasers, since they are characterized by a complicated spatial structure of the modes. If, as it
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responsible for mode-locking [40] at the lasing transition. Mode-locking is the regime under
which a standard multimode laser generates ultrashort pulses, due to the formation of phase
waves of nontrivial slope [54]. In random lasers the mode couplings are non-perturbatively
disordered disrupting the onset of a laser pulse. However, the underlying phenomenon of
phase locking might still be present, though as a self-starting phenomenon [41] rather than
induced by ad hoc devices as in standard mode-locking lasers [40].

Frequencies are, in principle, not equispaced in random lasers and their convolution would
prevent the onset of pulses in time even in presence of unfrustrated couplings. Since, however,
because of quenched disorder in the couplings no pulse is there notwithstanding the distribu-
tion of the mode frequencies, we consider here for simplicity a frequency-comb distribution:

!k =!1 + (k� 1)�! , k = 1, ..., N , (16)

with �⌧ �! and the central frequency given by !0 '!1 + N�!/2.
We note that in this case the linear term of the complete Hamiltonian Eq. (13) is diagonal.

If we assume that the diagonal part of the pairwise couplings does not depend on the modes,
together with the spherical constraint Eq. (11), this term is an irrelevant additive constant.
The diagonal part of the linear contribution to the Hamiltonian physically represents the gain
profile of the optical random medium (possibly becoming a random laser at high pumping). As
a working hypothesis we are assuming a uniform gain profile over the whole spectrum. For the
numerical simulations of this work, then, we have sampled configurations of the light modes
according to the equilibrium probability distribution in Eq. (15) with H = H4 the four-body
term defined in Eq. (14). Due to FMC the only non zero contribution to H4[a] comes from
the frequencies which fulfill the constraint (1). More notably, with Eq. (16) the condition (1)
on the frequencies can be mapped into a condition on the indices of the interaction graph

|k1 � k2 + k3 � k4|= 0 . (17)

The FMC in Eq. (17) tends to cut order O(N) interacting quadruplets with respect to the
complete graph [50]. Therefore, the total amount of couplings in the network is O(N3) and
each phasor spin in the system will be interacting in O(N2) quadruplets. Though diluted with
respect to the complete graph, the network is still dense.

The FMC also introduces non-linear correlations in the interactions affecting the topology
of the interaction network. Modes with more similar frequencies are connected by a higher
number of quadruplets and, consequently, they are effectively more coupled. As a conse-
quence, modes whose frequencies are at the center of the spectrum (! '!0) tend to interact
more than modes whose frequencies are at the boundaries (! '!1 or ! '!1+N�!). This
can be clearly seen in the emission spectrum Ik resulting from the numerical simulations for
a given fixed instance of the disorder, which is shown in Fig. 1. Data are obtained using the
Monte Carlo Exchange algorithm, also known as Parallel Tempering, allowing to reach equi-
librium on relatively short simulation times. All observables analyzed here are drawn from
configurations at equilibrium. All details about the numerical simulation algorithm and the
computation of the equilibrium thermal averages are discussed in App. A.

Let us briefly comment on the relationship between the physical intensities Ik and the
complex amplitude variables of the simulated model (14). In real experiments the heat bath
temperature T is typically kept fixed (there are exceptions like, e.g., in Ref. [59]) and the
overall system energy E = ✏N is varied by tuning the pumping power. In our simulations, ✏ is
fixed and kept equal to one in the spherical constraint,

P
k |ak|2 =
P

k A2
k = N , whereas T is

varied. Therefore, according to Eq. (10) a change in the pumping rate P because of a shift
in the energy ✏ pumped into the system corresponds to a shift of 1/

p
T . If we rescale the
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Figure 2: Periodic boundary conditions on the mode frequency indexes for the fre-
quency matching condition.

where [n] is the integer part of n. From now on we refer to the version of the ML 4-phasor
model with periodic boundary condition on the frequencies as PBC, whereas the original one,
with free boundary conditions will be termed FBC.

In Fig. 3 we show the emission spectrum at equilibrium for a single instance of disorder for
the ML 4-phasor model with PBC for the frequencies. The most relevant difference with respect
to the case of FBC is the complete absence of narrowing in the spectrum, which corresponds
to the absence of band-edge modes: all modes interact with identical probability with the rest
of the system.

In Figs. 4 and 5 we also show the FBC and PBC spectra averaged over roughly a hundred
instances of disorder. In Fig. 4 one can observe the typical narrowing occurring in random
lasers [2, 3, 5, 28] as the pumping energy increases. Fig. 5 displays flat spectra in the low
pumping regime, and homogeneously distributed random resonances in the high pumping
regime. They look like the central part of the spectra of Fig. 4.

4 Universality Class

In a �4 mean-field theory (a Landau theory) the critical exponents characterizing the univer-
sality class are � = 1/2 for the order parameter h�i, �= 1 for the susceptibility � and ⌫= 1/2
for the correlation length. They satisfy the hyperscaling relation 2� + � = ⌫d, holding for all
dimensions d  duc, the upper critical dimension, that is duc = 4 in a�4 model. As an instance,
this is the universality class of the Random Energy Model (REM), a reference simplified model
for the glass transition. This is also the universality class of the mean-field 4-phasor model
representing a random laser in the so-called narrow-band approximation, both in a fully con-
nected interaction network, where the solution can be analytically computed [33] and in a
uniformly randomly diluted version of the model, analyzed by means of equilibrium Monte
Carlo simulations in Ref. [39].
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Figure 1: Intensity spectrum Ik, Eq. (18), for a single realization of quenched disorder
of the ML 4-phasor model with free boundary conditions on the frequencies and
N = 120 modes. Temperature T 2 [0.7, 1.45] (color map on the vertical bar). Notice
the narrowing of the central part of the spectrum, because of FMC and the onset of
isolated spikes as T decreases, signaling breaking of intensity equipartition. The
pattern of the peaks is disordered and strongly depends on the random sample and
on the single dynamic history.

intensity of the mode k as

Ik =
A2

kp
T

, (18)

we have
P

k Ik = N/
p

T = N✏, as in Eq. (11).
One of the most relevant features of the intensity spectrum shown in Fig. 1 is that it be-

comes more and more structured and heterogeneous upon decreasing the temperature. A first
analysis of this phenomenon in terms of intensity equipartition breaking among the different
modes has been performed in [39], and a deepening of the collective inhomogeneous behavior
of the modes is presented in [60]. Another interesting feature of the spectrum is the central
band narrowing, akin to the spectra of true experimental realizations of random lasers [2,3].
This is a consequence of the fact that band-edge modes are less interacting and, as far as
numerical simulations are concerned, is one of the reasons why this sort of simulations are
plagued by strong finite-size effects.

In order to reduce these finite-size effects we have imposed periodic boundary conditions
on the frequencies when filtering couplings with the FMC condition. This has the effect of
eliminating band-edge modes, or, equivalently, it is like considering only modes at the center
of the spectrum in a much larger system. The periodic boundary conditions of the frequencies
are obtained in practice by representing the frequency indices as variables on a ring, see Fig.
2, and taking their distance as the smallest one between any two of them:

|ka � kb|=

8
<
:

|ka � kb| if |ka � kb|
⇥N

2

⇤

N � |ka � kb| if |ka � kb|�
⇥N

2

⇤ ,

(19)
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Figure 1: Intensity spectrum Ik, Eq. (18), for a single realization of quenched disorder
of the ML 4-phasor model with free boundary conditions on the frequencies and
N = 120 modes. Temperature T 2 [0.7, 1.45] (color map on the vertical bar). Notice
the narrowing of the central part of the spectrum, because of FMC and the onset of
isolated spikes as T decreases, signaling breaking of intensity equipartition. The
pattern of the peaks is disordered and strongly depends on the random sample and
on the single dynamic history.

intensity of the mode k as

Ik =
A2

kp
T

, (18)

we have
P

k Ik = N/
p

T = N✏, as in Eq. (11).
One of the most relevant features of the intensity spectrum shown in Fig. 1 is that it be-

comes more and more structured and heterogeneous upon decreasing the temperature. A first
analysis of this phenomenon in terms of intensity equipartition breaking among the different
modes has been performed in [39], and a deepening of the collective inhomogeneous behavior
of the modes is presented in [60]. Another interesting feature of the spectrum is the central
band narrowing, akin to the spectra of true experimental realizations of random lasers [2,3].
This is a consequence of the fact that band-edge modes are less interacting and, as far as
numerical simulations are concerned, is one of the reasons why this sort of simulations are
plagued by strong finite-size effects.

In order to reduce these finite-size effects we have imposed periodic boundary conditions
on the frequencies when filtering couplings with the FMC condition. This has the effect of
eliminating band-edge modes, or, equivalently, it is like considering only modes at the center
of the spectrum in a much larger system. The periodic boundary conditions of the frequencies
are obtained in practice by representing the frequency indices as variables on a ring, see Fig.
2, and taking their distance as the smallest one between any two of them:

|ka � kb|=

8
<
:

|ka � kb| if |ka � kb|
⇥N

2

⇤

N � |ka � kb| if |ka � kb|�
⇥N

2

⇤ ,

(19)

9

As if only central 
modes count 

SciPost Phys. 14, 144 (2023)

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  0.2  0.4  0.6  0.8  1

I(k
)

T

k

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

Figure 3: Intensity spectrum Ik Eq. (18) for a single realization of quenched disorder
of the ML 4-phasor model with periodic boundary conditions on the frequencies and
N = 104. The spectrum is normalized and the modes k are divided by N . Temper-
ature T 2 [0.35,1.1] (color map on the right hand vertical bar). Notice the loss of
the spectrum curvature, due to periodic boundary conditions on the FMC and the
persistence of the isolated peaks.

Moving to the more realistic random laser models, where the basic ingredient for mode-
locking, the frequency matching condition (1) is implemented, it is more difficult to understand
whether the universality class remains the same. In Ref. [39] an estimate of the value of the
critical exponent ⌫eff ⌘ 2� + � ' 2/3 was provided for the mode-locked random laser model.
This result is quite different from the value 2� + � = 2 which characterizes the REM model,
even if we consider its numerical finite-size scaling analysis.

As an instance, the REM specific heat behaviour for small sizes N = 16,20, 24,28 is re-
ported in Fig. 6. Details about the numerical technique used are given in App. B. Even though
the simulated N are not very large, from the interpolation of the cV (T ) peaks it turns out
that ⌫eff = 2� + � = 1.9 ± 0.2. Strong finite size effects are there, as one can observe from
the estimate of the ↵ exponent, displaying a value ↵ = 0.52± 0.07, rather different from the
mean-field exponent ↵ = 0. Because of preasymptotic effects, indeed, the scaling relation
2� + �+↵= 2 (independent from the system dimension) appears to be violated.

4.1 Mean-field exponent

The exponent value ⌫eff = 2� + �= 2 can be derived through a simple argument, which does
not require any specific knowledge of the model and can be easily generalized. Let us consider
a mean-field theory described by the Ginzburg-Landau potential

V (�) =
1
2
⌧�2 +

g
4!
�4 , (20)

where � represents the global order parameter of the transition and ⌧ is the reduced tempera-
ture ⌧= T/Tc�1. This is the standard paradigm of a second order phase transition, as a glass
transition is known to be, as far as the thermodynamic potential and its derivatives (including
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In the standard laser case the linear couplings are diagonal and the non-linear ones can be
safely considered as constant: in this case, Dk is the group velocity dispersion coefficient and
� is the self-phase modulation coefficient, responsible for the Kerr effect [40]. In the purely
dissipative limit [34,37], i.e. Dk1k2

⌧ Gk1k2
and �k1k2k3k4

⌧ �k1k2k3k4
, which in standard laser

theory corresponds to neglect the group velocity dispersion and the Kerr effect, the dynamics
of Eq. (2) becomes a potential differential equation

dak1

d t
= � @H[a]
@ ak1

(t)
+⌘k1

(t) ,

with a Hamiltonian function given by

H = �
X

k|FMC(k)

Gk1k2
ak1

ak2
�
X

k|FMC(k)

�k1k2k3k4
ak1

ak2
ak3

ak4
+ c.c. (9)

In principle, the noise is correlated, i.e. h⌘k1
⌘k2
i 6= �k1k2

. However, it can be diagonalized
by changing basis of dynamic variables: the decomposition of resonator modes into a slow
amplitude basis is not unique [57] and one can use this freedom to build a basis in which the
noise has no correlations. The diagonalization of the noise can be done at the cost of having
non-diagonal linear interactions, which is not a real complication in the random laser case,
since linear couplings already have off-diagonal contributions accounting for the openness of
the cavity.

The laser dynamics is brought to stationarity by gain saturation, a phenomenon connected
to the fact that, as the power is kept constant, the emitting atoms periodically decade in lower
states saturating the gain of the laser. In the same way the dynamics induced by the Hamil-
tonian Eq. (9) eventually reaches a stationary regime, when a constraint on the total energy
contained in the system is added. This argument was first proposed for standard multimode
lasers in Refs [37, 56]. In fact, lasers are strongly out of equilibrium: energy is constantly
pumped into the system in order to keep population inversion and stimulated emission, and in
the case of cavityless systems also compensate the leakages. However, a stationary regime can
be described as if the system is at equilibrium with an effective thermal bath, whose effective
temperature (a “photonic” temperature) accounts both for the amount of energy E = ✏N stored
into the system because of the external pumping and for the spontaneous emission rate. The
latter is proportional to the kinetic energy of the atoms, e. g., to the heat bath temperature T .
Eventually, the external parameter driving the lasing transition turns out to be [33,34,49]

Tphotonic =
T
✏2

. (10)

One can also introduce the pumping rate P [41] as the inverse of the square root of this ratio:

P2 =
✏2

T
=

1
T photonic

.

In order to mathematically model the gain saturation, an overall spherical constraint can
be imposed on the amplitudes fixing the total optical intensity in the system

NX

k=1

|ak|2 = ✏N . (11)

The precise value of the couplings in the Hamiltonian Eq. (9) requires the knowledge of
the spatial wavefunctions of the modes, see Eqs. (5) and (6), which is not available in random
lasers, since they are characterized by a complicated spatial structure of the modes. If, as it
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responsible for mode-locking [40] at the lasing transition. Mode-locking is the regime under
which a standard multimode laser generates ultrashort pulses, due to the formation of phase
waves of nontrivial slope [54]. In random lasers the mode couplings are non-perturbatively
disordered disrupting the onset of a laser pulse. However, the underlying phenomenon of
phase locking might still be present, though as a self-starting phenomenon [41] rather than
induced by ad hoc devices as in standard mode-locking lasers [40].

Frequencies are, in principle, not equispaced in random lasers and their convolution would
prevent the onset of pulses in time even in presence of unfrustrated couplings. Since, however,
because of quenched disorder in the couplings no pulse is there notwithstanding the distribu-
tion of the mode frequencies, we consider here for simplicity a frequency-comb distribution:

!k =!1 + (k� 1)�! , k = 1, ..., N , (16)

with �⌧ �! and the central frequency given by !0 '!1 + N�!/2.
We note that in this case the linear term of the complete Hamiltonian Eq. (13) is diagonal.

If we assume that the diagonal part of the pairwise couplings does not depend on the modes,
together with the spherical constraint Eq. (11), this term is an irrelevant additive constant.
The diagonal part of the linear contribution to the Hamiltonian physically represents the gain
profile of the optical random medium (possibly becoming a random laser at high pumping). As
a working hypothesis we are assuming a uniform gain profile over the whole spectrum. For the
numerical simulations of this work, then, we have sampled configurations of the light modes
according to the equilibrium probability distribution in Eq. (15) with H = H4 the four-body
term defined in Eq. (14). Due to FMC the only non zero contribution to H4[a] comes from
the frequencies which fulfill the constraint (1). More notably, with Eq. (16) the condition (1)
on the frequencies can be mapped into a condition on the indices of the interaction graph

|k1 � k2 + k3 � k4|= 0 . (17)

The FMC in Eq. (17) tends to cut order O(N) interacting quadruplets with respect to the
complete graph [50]. Therefore, the total amount of couplings in the network is O(N3) and
each phasor spin in the system will be interacting in O(N2) quadruplets. Though diluted with
respect to the complete graph, the network is still dense.

The FMC also introduces non-linear correlations in the interactions affecting the topology
of the interaction network. Modes with more similar frequencies are connected by a higher
number of quadruplets and, consequently, they are effectively more coupled. As a conse-
quence, modes whose frequencies are at the center of the spectrum (! '!0) tend to interact
more than modes whose frequencies are at the boundaries (! '!1 or ! '!1+N�!). This
can be clearly seen in the emission spectrum Ik resulting from the numerical simulations for
a given fixed instance of the disorder, which is shown in Fig. 1. Data are obtained using the
Monte Carlo Exchange algorithm, also known as Parallel Tempering, allowing to reach equi-
librium on relatively short simulation times. All observables analyzed here are drawn from
configurations at equilibrium. All details about the numerical simulation algorithm and the
computation of the equilibrium thermal averages are discussed in App. A.

Let us briefly comment on the relationship between the physical intensities Ik and the
complex amplitude variables of the simulated model (14). In real experiments the heat bath
temperature T is typically kept fixed (there are exceptions like, e.g., in Ref. [59]) and the
overall system energy E = ✏N is varied by tuning the pumping power. In our simulations, ✏ is
fixed and kept equal to one in the spherical constraint,

P
k |ak|2 =
P

k A2
k = N , whereas T is

varied. Therefore, according to Eq. (10) a change in the pumping rate P because of a shift
in the energy ✏ pumped into the system corresponds to a shift of 1/

p
T . If we rescale the
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Figure 8: Specific heat cVN
, (39), for the ML 4-phasor model with periodic boundary

conditions on the frequencies as a function of T . Different curves represent different
simulated sizes of the system. The simulated sizes are N = 18,28, 42, 54, 66,104.
(Inset) Specific heat scaled by N↵/⌫eff as a function of ⌧N1/⌫eff , with ↵ = 0.27(5),
⌫eff = 2� + �= 1.2(2).

cas explore different regions of the same phase space and may thermalize in configurations
belonging to apart states. To study the behavior of the PJ (q)we choose Nrep = 4, so that at any
measurement time six values of the overlap are available q↵� = {q01, q02, q03, q12, q13, q23}. In
order to accumulate statistics, we measure the value of q↵� using N equilibrium, time uncor-
related, configurations of replicas at the same iteration of the simulated dynamics. Hence, for
each disordered sample the PJ (q) histograms are built with N ⇥Nrep(Nrep�1)/2 values of the
overlap. The number of configurations N actually used from our data can be evinced from
tables 2-3 in appendix A, in which the last half of the simulated Monte Carlo steps are surely
thermalized and the correlation time was estimated to be 28 Monte Carlo steps. Eventually,
for each realization of the quenched random couplings we have N = 210� 212, depending on
the size.

The overlap distribution functions PJ (q) are computed as the normalized histograms of
the overlaps for each one of the samples. This has been done for each simulated size of the
ML 4-phasor model with both FBC and PBC. In Fig. 9 we present the overlap distributions for
five samples at the temperature T = 0.25 ' 0.45Tc of the size N = 54 of the ML 4-phasor
model with PBC, together with the overlap distribution averaged over 100 samples. Given the
fluctuations of PJ (q) among the different samples, it is clear that the only physical quantity to
be considered in order to assess the glass transition is the averaged P(q)⌘ PJ (q).

This is particularly important in the case of the overlap distribution function, since, con-
trarily to the other thermodynamic observables, it is not a self-averaging quantity [42], i.e.,
the average P(q) cannot be reached simply by increasing the size of the system over which a
single sample PJ (q) is built, but only by averaging over disorder. In Fig. 10 and Fig. 11 the
average overlap distribution function of the ML 4-phasor model with FBC and PBC are, re-
spectively, reported for the whole simulated temperature range in a system with N = 62 spins.
The reduction of the finite-size effects obtained by using periodic boundary conditions in the
choice of interacting modes leads to display P(q) with more distinct secondary peaks in the
case of the ML 4-phasor model with PBC.
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the previous expression. Eventually, the critical exponent for the scaling of the specific heat
width in a generic mean-field theory must take value in the interval

1 ⌫eff  2 . (34)

Given the specific theory �n and its upper critical dimension duc(n), the critical mean-field
exponent ⌫ is equal to ⌫= ⌫eff/duc(n).

In the model under consideration, though, we have a dense (though not fully connected)
interaction network and we do not have a reference d-dimensional lattice underneath, such
that a scaling relation of the number of modes to a characteristic length can be set, as, for
instance N = Ld in a d-dimensional hypercubic lattice. Our analysis will, therefore, be limited
to the estimate of the exponents ↵, � and �.

It is also worth noting that the previous argument is exact only in the large-N limit, where
the saddle-point approximation holds. It is therefore likely that numerical simulations at fi-
nite N display finite-size effects which deviate from the above estimate. In particular for dense
models as the one we are studying it is difficult to access higher values of N because the num-
ber of interacting quadruplets increases as N3 and the computational cost of the simulations
is the one of a Non-deterministic Polynomial Complete problem. For help decreasing the finite
size effects we have exploited the alternative strategy discussed in Sec. 3, whose results are
presented in the following subsection.

4.2 Finite-size scaling analysis: numerical results

We perform a finite-size scaling study of the specific heat obtained from our numerical simu-
lations, in order to determine the value of the critical exponents ↵ and ⌫eff. Let us define the
absolute value of the reduced temperature t = |T/Tc �1|. In general, the basic assumption of
the FSS Ansatz [61,62] is that the finite-size behaviour of an observable YN in a d-dimensional
system of size (volume) N is governed by the ratio between the correlation length ⇠1 of the
infinite system and the size N . In the thermodynamic limit near the critical point the observ-
able Y scales like

Y1(T )⇡ At� .

The correlation length ⇠1 scales like

⇠1(T )⇡ ⇠0 t�⌫ . (35)

The scaling hypothesis can, then, be written as

YN (T ) = N
!
d fY

✓
⇠d
1
N

◆
, (36)

where ! is the critical exponent for the scaling of the peak of the observable and fY is a
dimensionless function that depends on the observable Y . The function fY is such that in
the limit N ! 1 one recovers the scaling law Y1(T ) ⇡ At� , an hence, by using (35),
! = /⌫ [61]. Therefore combining Eqs. (35) and (36) the scaling relation becomes
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where tN = |T/Tc(N)�1|, Tc(N) is the finite-size critical temperature and f̂Y is another scaling
function. In the case of the specific heat, the previous finite-size scaling law takes the following
form

cVN
(T ) = N

↵
⌫eff f̂CVN

⇣
N

1
⌫eff tN

⌘
, (38)
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the previous expression. Eventually, the critical exponent for the scaling of the specific heat
width in a generic mean-field theory must take value in the interval

1 ⌫eff  2 . (34)

Given the specific theory �n and its upper critical dimension duc(n), the critical mean-field
exponent ⌫ is equal to ⌫= ⌫eff/duc(n).

In the model under consideration, though, we have a dense (though not fully connected)
interaction network and we do not have a reference d-dimensional lattice underneath, such
that a scaling relation of the number of modes to a characteristic length can be set, as, for
instance N = Ld in a d-dimensional hypercubic lattice. Our analysis will, therefore, be limited
to the estimate of the exponents ↵, � and �.

It is also worth noting that the previous argument is exact only in the large-N limit, where
the saddle-point approximation holds. It is therefore likely that numerical simulations at fi-
nite N display finite-size effects which deviate from the above estimate. In particular for dense
models as the one we are studying it is difficult to access higher values of N because the num-
ber of interacting quadruplets increases as N3 and the computational cost of the simulations
is the one of a Non-deterministic Polynomial Complete problem. For help decreasing the finite
size effects we have exploited the alternative strategy discussed in Sec. 3, whose results are
presented in the following subsection.

4.2 Finite-size scaling analysis: numerical results

We perform a finite-size scaling study of the specific heat obtained from our numerical simu-
lations, in order to determine the value of the critical exponents ↵ and ⌫eff. Let us define the
absolute value of the reduced temperature t = |T/Tc �1|. In general, the basic assumption of
the FSS Ansatz [61,62] is that the finite-size behaviour of an observable YN in a d-dimensional
system of size (volume) N is governed by the ratio between the correlation length ⇠1 of the
infinite system and the size N . In the thermodynamic limit near the critical point the observ-
able Y scales like

Y1(T )⇡ At� .

The correlation length ⇠1 scales like

⇠1(T )⇡ ⇠0 t�⌫ . (35)

The scaling hypothesis can, then, be written as

YN (T ) = N
!
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where ! is the critical exponent for the scaling of the peak of the observable and fY is a
dimensionless function that depends on the observable Y . The function fY is such that in
the limit N ! 1 one recovers the scaling law Y1(T ) ⇡ At� , an hence, by using (35),
! = /⌫ [61]. Therefore combining Eqs. (35) and (36) the scaling relation becomes
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where tN = |T/Tc(N)�1|, Tc(N) is the finite-size critical temperature and f̂Y is another scaling
function. In the case of the specific heat, the previous finite-size scaling law takes the following
form
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, (38)
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where ↵ denotes the critical exponent of the specific heat peak divergence. Since the dimen-
sionless function f̂ is scaling invariant, if one uses the correct values of the exponents ↵ and
⌫eff, the curves cVN

(T )/N↵/⌫eff for different values of N should collapse on the same curve.
In order to get the two exponents ↵ and ⌫eff from our numerical data we follow the scaling

method of Refs. [63, 64], whose details are reported in App. C. For each size N the specific
heat is measured by calculating the equilibrium energy fluctuations at each temperature T and
then averaging over disorder instances

cVN
=

1
N
hE2i � hEi2

T2
, (39)

where h. . . i represents the thermal average and [. . . ] represents the average over disorder,
see App. C.

For the systems with FBC, the specific heat behaviour as a function of temperature is shown
in the main panel of Fig. 7 for different sizes. By a quadratic fit of the peaks of the specific heat
(at Tc(N)), the critical temperature is estimated to be Tc = 0.86(3) in the thermodynamic limit,
as interpolated in Appendix C. In the inset of Fig. 7 data are collapsed using the exponents ↵
and ⌫eff obtained from the FFS analysis reported in App. C:

FBC: ↵= 0.48± 0.05 , 1/⌫eff = 1.1± 0.1 . (40)

In order to perform the FSS analysis we have used the temperatures reported in Table 1.
With respect to the estimate 1/⌫eff ' 1.5 found in [39], a much larger statistics allows now

to find an estimate of 2� +� closer to the mean-field threshold and suggesting that deviations
from mean-field theory might be due to pre-asymptotic effects in N . The confirmation that
this is, indeed, the origin of the anomalous value previously found for 2� + � comes from the
analysis with frequency PBC, devised to partially circumvent finite size corrections.

The specific heat for systems whose frequencies obeys PBC are displayed in Fig. 8. In the
main panel we show the raw data. Analyzing the scaling of the peak the critical temperature
Tc = 0.61(3) has been determined. In the inset of Fig. 8 we show the collapsed data with the
values of exponents derived with the FSS method reported in App. C

PBC: ↵= 0.27± 0.05 , 1/⌫eff = 0.86± 0.14 . (41)

With PBC we find an estimate inside the interval (34) for a mean-field universality class. There-
fore, up to the limits of our analysis, despite being possibly still of a different universality class
with respect to the REM, for which 2� + �= 2, we observe that the glass transition of the ML
4-phasor model is compatible with a mean-field transition.

Table 1: Values of the critical temperatures for the ML 4-phasor model with fixed and
periodic boundary conditions.

FBC PBC
N4 N Tc �Tc N Tc �Tc
28 18 0.55 0.04 - - -
29 - - - 18 0.42 0.02
211 32 0.63 0.025 28 0.49 0.02
213 48 0.69 0.02 42 0.52 0.02
214 62 0.75 0.03 54 0.55 0.03
215 - - - 66 0.56 0.04
216 96 0.8 0.07 82 0.56 0.05
217 120 0.83 0.09 - - -
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Table 4: Details for the simulations of the ML 4-phasor model with PBC.

N Tc �Tc Ns
16 0.85 0.02 300
20 0.83 0.02 200
24 0.81 0.02 200
28 0.80 0.02 100

and compute the maximum point of each fitting function as Tc(N) = �bN/(2cN ), estimat-
ing the statistical error accordingly. The critical temperature Tc(1) of the model can be
extrapolated from the fit of the finite-size critical temperatures with the following function:
Tc(N) = Tc(1) + aN�b, where the exponent b gives a first rough estimate of the critical
exponent 1/⌫eff. The results of the fit are:

FBC: Tc(1) = 0.86± 0.03 , b = 1.6± 0.5 , (C.1)

PBC: Tc(1) = 0.61± 0.03 , b = 0.98± 0.3 . (C.2)

We then take the following Ansatz on the form of scaling function f̂ in Eq. (38)

f̂ (x) = A+ C x2 , (C.3)

where x = N1/⌫eff tN , with tN computed by using the Tc(N) reported in Table 1. In the previous
Ansatz we have not included the linear term, since the points are translated in order for the
peak of each curve to be in the origin and we expect the linear term not to matter. With this
Ansatz the scaling hypothesis for the specific heat Eq. (38) reads as

cVN
(T ) = ÃN + C̃N t2

N , (C.4)

where X̃N = XN N
↵+m
⌫eff , with XN = {AN , CN} and m = {0,2}. We fit the points of the curves

around the critical temperature with the previous function and determine the values of the
coefficients. We, then, notice that the behaviour of the logarithm of the coefficients,

ln ÃN = ln AN +
↵

⌫eff
ln N ,

ln |C̃N |= ln |CN |+
↵+ 2
⌫eff

ln N ,

is linear in ln N and the estimates of ↵ and ⌫eff can be obtained by linear interpolation.
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Figure 3: Intensity spectrum Ik Eq. (18) for a single realization of quenched disorder
of the ML 4-phasor model with periodic boundary conditions on the frequencies and
N = 104. The spectrum is normalized and the modes k are divided by N . Temper-
ature T 2 [0.35,1.1] (color map on the right hand vertical bar). Notice the loss of
the spectrum curvature, due to periodic boundary conditions on the FMC and the
persistence of the isolated peaks.

Moving to the more realistic random laser models, where the basic ingredient for mode-
locking, the frequency matching condition (1) is implemented, it is more difficult to understand
whether the universality class remains the same. In Ref. [39] an estimate of the value of the
critical exponent ⌫eff ⌘ 2� + � ' 2/3 was provided for the mode-locked random laser model.
This result is quite different from the value 2� + � = 2 which characterizes the REM model,
even if we consider its numerical finite-size scaling analysis.

As an instance, the REM specific heat behaviour for small sizes N = 16, 20, 24,28 is re-
ported in Fig. 6. Details about the numerical technique used are given in App. B. Even though
the simulated N are not very large, from the interpolation of the cV (T ) peaks it turns out
that ⌫eff = 2� + � = 1.9 ± 0.2. Strong finite size effects are there, as one can observe from
the estimate of the ↵ exponent, displaying a value ↵ = 0.52± 0.07, rather different from the
mean-field exponent ↵ = 0. Because of preasymptotic effects, indeed, the scaling relation
2� + �+↵= 2 (independent from the system dimension) appears to be violated.

4.1 Mean-field exponent

The exponent value ⌫eff = 2� + �= 2 can be derived through a simple argument, which does
not require any specific knowledge of the model and can be easily generalized. Let us consider
a mean-field theory described by the Ginzburg-Landau potential

V (�) =
1
2
⌧�2 +

g
4!
�4 , (20)

where � represents the global order parameter of the transition and ⌧ is the reduced tempera-
ture ⌧= T/Tc�1. This is the standard paradigm of a second order phase transition, as a glass
transition is known to be, as far as the thermodynamic potential and its derivatives (including
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Figure 11: Parisi overlap distribution for the size N = 54 of the ML 4-phasor model
with with periodic boundary conditions on the frequencies. The distribution is aver-
aged over Ns = 100 instances of disorder. Temperature T 2 [0.3, 0.85] (color map on
the right hand vertical bar). The blue curve corresponding to the lowest temperature
is at T ' 0.45Tc , with Tc = 0.61(3). Notice that here the overlap distribution has
more pronounced secondary peaks with respect to the overlap distribution in Fig. 10.

analysis of the specific heat peaks. Introducing PBC also helps in this case as, at the same
simulated sizes, the glassy nature of the low T phase is more evident in the model with PBC
network, rather than in the one with FBC. This is graphically exemplified in the P(q) shown
in Figs. 10, 11.
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A Numerical Algorithm

The numerical simulations have been performed by means of an Exchange Monte Carlo al-
gorithm [71] parallelized on GPUs to sample the probability distribution Eq. (15). The Ex-
change Monte Carlo, else called Parallel Tempering (PT) is a very powerful tool for simulating
“hardly-relaxing” systems, characterized by a rugged free energy. It is based on the idea that
the thermalization is facilitated by a reversible Markovian dynamics of configurations among
heat baths at nearby temperatures. In particular, configurations belonging to copies of the
system at higher temperature help the copies at lower temperature to jump out of minima of
the rugged free energy landscape. For each size N of the simulated systems, we have run PT
simulations with NPT thermal baths at temperature Ti 2 [Tmin, Tmax]. The values are reported
in Tables 2, 3.
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Table 4: Details for the simulations of the ML 4-phasor model with PBC.

N Tc �Tc Ns
16 0.85 0.02 300
20 0.83 0.02 200
24 0.81 0.02 200
28 0.80 0.02 100

and compute the maximum point of each fitting function as Tc(N) = �bN/(2cN ), estimat-
ing the statistical error accordingly. The critical temperature Tc(1) of the model can be
extrapolated from the fit of the finite-size critical temperatures with the following function:
Tc(N) = Tc(1) + aN�b, where the exponent b gives a first rough estimate of the critical
exponent 1/⌫eff. The results of the fit are:

FBC: Tc(1) = 0.86± 0.03 , b = 1.6± 0.5 , (C.1)

PBC: Tc(1) = 0.61± 0.03 , b = 0.98± 0.3 . (C.2)

We then take the following Ansatz on the form of scaling function f̂ in Eq. (38)

f̂ (x) = A+ C x2 , (C.3)

where x = N1/⌫eff tN , with tN computed by using the Tc(N) reported in Table 1. In the previous
Ansatz we have not included the linear term, since the points are translated in order for the
peak of each curve to be in the origin and we expect the linear term not to matter. With this
Ansatz the scaling hypothesis for the specific heat Eq. (38) reads as

cVN
(T ) = ÃN + C̃N t2

N , (C.4)

where X̃N = XN N
↵+m
⌫eff , with XN = {AN , CN} and m = {0,2}. We fit the points of the curves

around the critical temperature with the previous function and determine the values of the
coefficients. We, then, notice that the behaviour of the logarithm of the coefficients,

ln ÃN = ln AN +
↵

⌫eff
ln N ,

ln |C̃N |= ln |CN |+
↵+ 2
⌫eff

ln N ,

is linear in ln N and the estimates of ↵ and ⌫eff can be obtained by linear interpolation.
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Figure 1: Intensity spectrum Ik, Eq. (18), for a single realization of quenched disorder
of the ML 4-phasor model with free boundary conditions on the frequencies and
N = 120 modes. Temperature T 2 [0.7, 1.45] (color map on the vertical bar). Notice
the narrowing of the central part of the spectrum, because of FMC and the onset of
isolated spikes as T decreases, signaling breaking of intensity equipartition. The
pattern of the peaks is disordered and strongly depends on the random sample and
on the single dynamic history.

intensity of the mode k as

Ik =
A2

kp
T

, (18)

we have
P

k Ik = N/
p

T = N✏, as in Eq. (11).
One of the most relevant features of the intensity spectrum shown in Fig. 1 is that it be-

comes more and more structured and heterogeneous upon decreasing the temperature. A first
analysis of this phenomenon in terms of intensity equipartition breaking among the different
modes has been performed in [39], and a deepening of the collective inhomogeneous behavior
of the modes is presented in [60]. Another interesting feature of the spectrum is the central
band narrowing, akin to the spectra of true experimental realizations of random lasers [2,3].
This is a consequence of the fact that band-edge modes are less interacting and, as far as
numerical simulations are concerned, is one of the reasons why this sort of simulations are
plagued by strong finite-size effects.

In order to reduce these finite-size effects we have imposed periodic boundary conditions
on the frequencies when filtering couplings with the FMC condition. This has the effect of
eliminating band-edge modes, or, equivalently, it is like considering only modes at the center
of the spectrum in a much larger system. The periodic boundary conditions of the frequencies
are obtained in practice by representing the frequency indices as variables on a ring, see Fig.
2, and taking their distance as the smallest one between any two of them:

|ka � kb|=

8
<
:

|ka � kb| if |ka � kb|
⇥N

2

⇤

N � |ka � kb| if |ka � kb|�
⇥N

2

⇤ ,

(19)

9

2

Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.

ȧn(t) = �ı
@H

@a⇤n
� µ an(t) + ⌘n(t) (2)

Fn[{a}|{J}] ' �ı
@

@a⇤n
H[{a}|{J}]� µ an(t) (3)

ak(!k) = Ak(!k)eı�k(!k)

Ik = |ak|2,�k = arg(ak)
{Ik,�k,!k}

I,�,!
J
Ik(t) = |ak(t)|2

hIk(t)i =
1
T

R t0+T

t0
dt Ik(t)

[? ? ]

H = �
1

2

1,NX

jk

Jjkaja
⇤

k �
1

4!

1,NX

jklm

Jjklmaja
⇤

kala
⇤

m , (4)

where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 (5)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)
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Figure 1: Intensity spectrum Ik, Eq. (18), for a single realization of quenched disorder
of the ML 4-phasor model with free boundary conditions on the frequencies and
N = 120 modes. Temperature T 2 [0.7, 1.45] (color map on the vertical bar). Notice
the narrowing of the central part of the spectrum, because of FMC and the onset of
isolated spikes as T decreases, signaling breaking of intensity equipartition. The
pattern of the peaks is disordered and strongly depends on the random sample and
on the single dynamic history.

intensity of the mode k as

Ik =
A2

kp
T

, (18)

we have
P

k Ik = N/
p

T = N✏, as in Eq. (11).
One of the most relevant features of the intensity spectrum shown in Fig. 1 is that it be-

comes more and more structured and heterogeneous upon decreasing the temperature. A first
analysis of this phenomenon in terms of intensity equipartition breaking among the different
modes has been performed in [39], and a deepening of the collective inhomogeneous behavior
of the modes is presented in [60]. Another interesting feature of the spectrum is the central
band narrowing, akin to the spectra of true experimental realizations of random lasers [2,3].
This is a consequence of the fact that band-edge modes are less interacting and, as far as
numerical simulations are concerned, is one of the reasons why this sort of simulations are
plagued by strong finite-size effects.

In order to reduce these finite-size effects we have imposed periodic boundary conditions
on the frequencies when filtering couplings with the FMC condition. This has the effect of
eliminating band-edge modes, or, equivalently, it is like considering only modes at the center
of the spectrum in a much larger system. The periodic boundary conditions of the frequencies
are obtained in practice by representing the frequency indices as variables on a ring, see Fig.
2, and taking their distance as the smallest one between any two of them:

|ka � kb|=

8
<
:

|ka � kb| if |ka � kb|
⇥N

2

⇤

N � |ka � kb| if |ka � kb|�
⇥N

2

⇤ ,

(19)
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Figure 3: Intensity spectrum Ik Eq. (18) for a single realization of quenched disorder
of the ML 4-phasor model with periodic boundary conditions on the frequencies and
N = 104. The spectrum is normalized and the modes k are divided by N . Temper-
ature T 2 [0.35,1.1] (color map on the right hand vertical bar). Notice the loss of
the spectrum curvature, due to periodic boundary conditions on the FMC and the
persistence of the isolated peaks.

Moving to the more realistic random laser models, where the basic ingredient for mode-
locking, the frequency matching condition (1) is implemented, it is more difficult to understand
whether the universality class remains the same. In Ref. [39] an estimate of the value of the
critical exponent ⌫eff ⌘ 2� + � ' 2/3 was provided for the mode-locked random laser model.
This result is quite different from the value 2� + � = 2 which characterizes the REM model,
even if we consider its numerical finite-size scaling analysis.

As an instance, the REM specific heat behaviour for small sizes N = 16,20, 24,28 is re-
ported in Fig. 6. Details about the numerical technique used are given in App. B. Even though
the simulated N are not very large, from the interpolation of the cV (T ) peaks it turns out
that ⌫eff = 2� + � = 1.9 ± 0.2. Strong finite size effects are there, as one can observe from
the estimate of the ↵ exponent, displaying a value ↵ = 0.52± 0.07, rather different from the
mean-field exponent ↵ = 0. Because of preasymptotic effects, indeed, the scaling relation
2� + �+↵= 2 (independent from the system dimension) appears to be violated.

4.1 Mean-field exponent

The exponent value ⌫eff = 2� + �= 2 can be derived through a simple argument, which does
not require any specific knowledge of the model and can be easily generalized. Let us consider
a mean-field theory described by the Ginzburg-Landau potential

V (�) =
1
2
⌧�2 +

g
4!
�4 , (20)

where � represents the global order parameter of the transition and ⌧ is the reduced tempera-
ture ⌧= T/Tc�1. This is the standard paradigm of a second order phase transition, as a glass
transition is known to be, as far as the thermodynamic potential and its derivatives (including
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Figure 2: Periodic boundary conditions on the mode frequency indexes for the fre-
quency matching condition.

where [n] is the integer part of n. From now on we refer to the version of the ML 4-phasor
model with periodic boundary condition on the frequencies as PBC, whereas the original one,
with free boundary conditions will be termed FBC.

In Fig. 3 we show the emission spectrum at equilibrium for a single instance of disorder for
the ML 4-phasor model with PBC for the frequencies. The most relevant difference with respect
to the case of FBC is the complete absence of narrowing in the spectrum, which corresponds
to the absence of band-edge modes: all modes interact with identical probability with the rest
of the system.

In Figs. 4 and 5 we also show the FBC and PBC spectra averaged over roughly a hundred
instances of disorder. In Fig. 4 one can observe the typical narrowing occurring in random
lasers [2, 3, 5, 28] as the pumping energy increases. Fig. 5 displays flat spectra in the low
pumping regime, and homogeneously distributed random resonances in the high pumping
regime. They look like the central part of the spectra of Fig. 4.

4 Universality Class

In a �4 mean-field theory (a Landau theory) the critical exponents characterizing the univer-
sality class are � = 1/2 for the order parameter h�i, �= 1 for the susceptibility � and ⌫= 1/2
for the correlation length. They satisfy the hyperscaling relation 2� + � = ⌫d, holding for all
dimensions d  duc, the upper critical dimension, that is duc = 4 in a�4 model. As an instance,
this is the universality class of the Random Energy Model (REM), a reference simplified model
for the glass transition. This is also the universality class of the mean-field 4-phasor model
representing a random laser in the so-called narrow-band approximation, both in a fully con-
nected interaction network, where the solution can be analytically computed [33] and in a
uniformly randomly diluted version of the model, analyzed by means of equilibrium Monte
Carlo simulations in Ref. [39].

10

SciPost Phys. 14, 144 (2023)

responsible for mode-locking [40] at the lasing transition. Mode-locking is the regime under
which a standard multimode laser generates ultrashort pulses, due to the formation of phase
waves of nontrivial slope [54]. In random lasers the mode couplings are non-perturbatively
disordered disrupting the onset of a laser pulse. However, the underlying phenomenon of
phase locking might still be present, though as a self-starting phenomenon [41] rather than
induced by ad hoc devices as in standard mode-locking lasers [40].

Frequencies are, in principle, not equispaced in random lasers and their convolution would
prevent the onset of pulses in time even in presence of unfrustrated couplings. Since, however,
because of quenched disorder in the couplings no pulse is there notwithstanding the distribu-
tion of the mode frequencies, we consider here for simplicity a frequency-comb distribution:

!k =!1 + (k� 1)�! , k = 1, ..., N , (16)

with �⌧ �! and the central frequency given by !0 '!1 + N�!/2.
We note that in this case the linear term of the complete Hamiltonian Eq. (13) is diagonal.

If we assume that the diagonal part of the pairwise couplings does not depend on the modes,
together with the spherical constraint Eq. (11), this term is an irrelevant additive constant.
The diagonal part of the linear contribution to the Hamiltonian physically represents the gain
profile of the optical random medium (possibly becoming a random laser at high pumping). As
a working hypothesis we are assuming a uniform gain profile over the whole spectrum. For the
numerical simulations of this work, then, we have sampled configurations of the light modes
according to the equilibrium probability distribution in Eq. (15) with H = H4 the four-body
term defined in Eq. (14). Due to FMC the only non zero contribution to H4[a] comes from
the frequencies which fulfill the constraint (1). More notably, with Eq. (16) the condition (1)
on the frequencies can be mapped into a condition on the indices of the interaction graph

|k1 � k2 + k3 � k4|= 0 . (17)

The FMC in Eq. (17) tends to cut order O(N) interacting quadruplets with respect to the
complete graph [50]. Therefore, the total amount of couplings in the network is O(N3) and
each phasor spin in the system will be interacting in O(N2) quadruplets. Though diluted with
respect to the complete graph, the network is still dense.

The FMC also introduces non-linear correlations in the interactions affecting the topology
of the interaction network. Modes with more similar frequencies are connected by a higher
number of quadruplets and, consequently, they are effectively more coupled. As a conse-
quence, modes whose frequencies are at the center of the spectrum (! '!0) tend to interact
more than modes whose frequencies are at the boundaries (! '!1 or ! '!1+N�!). This
can be clearly seen in the emission spectrum Ik resulting from the numerical simulations for
a given fixed instance of the disorder, which is shown in Fig. 1. Data are obtained using the
Monte Carlo Exchange algorithm, also known as Parallel Tempering, allowing to reach equi-
librium on relatively short simulation times. All observables analyzed here are drawn from
configurations at equilibrium. All details about the numerical simulation algorithm and the
computation of the equilibrium thermal averages are discussed in App. A.

Let us briefly comment on the relationship between the physical intensities Ik and the
complex amplitude variables of the simulated model (14). In real experiments the heat bath
temperature T is typically kept fixed (there are exceptions like, e.g., in Ref. [59]) and the
overall system energy E = ✏N is varied by tuning the pumping power. In our simulations, ✏ is
fixed and kept equal to one in the spherical constraint,

P
k |ak|2 =
P

k A2
k = N , whereas T is

varied. Therefore, according to Eq. (10) a change in the pumping rate P because of a shift
in the energy ✏ pumped into the system corresponds to a shift of 1/

p
T . If we rescale the
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Figure 1: Intensity spectrum Ik, Eq. (18), for a single realization of quenched disorder
of the ML 4-phasor model with free boundary conditions on the frequencies and
N = 120 modes. Temperature T 2 [0.7, 1.45] (color map on the vertical bar). Notice
the narrowing of the central part of the spectrum, because of FMC and the onset of
isolated spikes as T decreases, signaling breaking of intensity equipartition. The
pattern of the peaks is disordered and strongly depends on the random sample and
on the single dynamic history.

intensity of the mode k as

Ik =
A2

kp
T

, (18)

we have
P

k Ik = N/
p

T = N✏, as in Eq. (11).
One of the most relevant features of the intensity spectrum shown in Fig. 1 is that it be-

comes more and more structured and heterogeneous upon decreasing the temperature. A first
analysis of this phenomenon in terms of intensity equipartition breaking among the different
modes has been performed in [39], and a deepening of the collective inhomogeneous behavior
of the modes is presented in [60]. Another interesting feature of the spectrum is the central
band narrowing, akin to the spectra of true experimental realizations of random lasers [2,3].
This is a consequence of the fact that band-edge modes are less interacting and, as far as
numerical simulations are concerned, is one of the reasons why this sort of simulations are
plagued by strong finite-size effects.

In order to reduce these finite-size effects we have imposed periodic boundary conditions
on the frequencies when filtering couplings with the FMC condition. This has the effect of
eliminating band-edge modes, or, equivalently, it is like considering only modes at the center
of the spectrum in a much larger system. The periodic boundary conditions of the frequencies
are obtained in practice by representing the frequency indices as variables on a ring, see Fig.
2, and taking their distance as the smallest one between any two of them:

|ka � kb|=

8
<
:

|ka � kb| if |ka � kb|
⇥N

2

⇤

N � |ka � kb| if |ka � kb|�
⇥N

2

⇤ ,

(19)
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.

ȧn(t) = �ı
@H

@a⇤n
� µ an(t) + ⌘n(t) (2)

Fn[{a}|{J}] ' �ı
@

@a⇤n
H[{a}|{J}]� µ an(t) (3)

ak(!k) = Ak(!k)eı�k(!k)

Ik = |ak|2,�k = arg(ak)
{Ik,�k,!k}

I,�,!
J
Ik(t) = |ak(t)|2

hIk(t)i =
1
T

R t0+T

t0
dt Ik(t)

[? ? ]

H = �
1

2

1,NX

jk

Jjkaja
⇤

k �
1

4!

1,NX

jklm

Jjklmaja
⇤

kala
⇤

m , (4)

where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 (5)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)

2

Ik = |ak|2

H[a] = �
X

k|FMC(k)
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Figure 3: Intensity spectrum Ik Eq. (18) for a single realization of quenched disorder
of the ML 4-phasor model with periodic boundary conditions on the frequencies and
N = 104. The spectrum is normalized and the modes k are divided by N . Temper-
ature T 2 [0.35,1.1] (color map on the right hand vertical bar). Notice the loss of
the spectrum curvature, due to periodic boundary conditions on the FMC and the
persistence of the isolated peaks.

Moving to the more realistic random laser models, where the basic ingredient for mode-
locking, the frequency matching condition (1) is implemented, it is more difficult to understand
whether the universality class remains the same. In Ref. [39] an estimate of the value of the
critical exponent ⌫eff ⌘ 2� + � ' 2/3 was provided for the mode-locked random laser model.
This result is quite different from the value 2� + � = 2 which characterizes the REM model,
even if we consider its numerical finite-size scaling analysis.

As an instance, the REM specific heat behaviour for small sizes N = 16,20, 24,28 is re-
ported in Fig. 6. Details about the numerical technique used are given in App. B. Even though
the simulated N are not very large, from the interpolation of the cV (T ) peaks it turns out
that ⌫eff = 2� + � = 1.9 ± 0.2. Strong finite size effects are there, as one can observe from
the estimate of the ↵ exponent, displaying a value ↵ = 0.52± 0.07, rather different from the
mean-field exponent ↵ = 0. Because of preasymptotic effects, indeed, the scaling relation
2� + �+↵= 2 (independent from the system dimension) appears to be violated.

4.1 Mean-field exponent

The exponent value ⌫eff = 2� + �= 2 can be derived through a simple argument, which does
not require any specific knowledge of the model and can be easily generalized. Let us consider
a mean-field theory described by the Ginzburg-Landau potential

V (�) =
1
2
⌧�2 +

g
4!
�4 , (20)

where � represents the global order parameter of the transition and ⌧ is the reduced tempera-
ture ⌧= T/Tc�1. This is the standard paradigm of a second order phase transition, as a glass
transition is known to be, as far as the thermodynamic potential and its derivatives (including
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 (5)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)
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Figure 3: Intensity spectrum Ik Eq. (18) for a single realization of quenched disorder
of the ML 4-phasor model with periodic boundary conditions on the frequencies and
N = 104. The spectrum is normalized and the modes k are divided by N . Temper-
ature T 2 [0.35,1.1] (color map on the right hand vertical bar). Notice the loss of
the spectrum curvature, due to periodic boundary conditions on the FMC and the
persistence of the isolated peaks.

Moving to the more realistic random laser models, where the basic ingredient for mode-
locking, the frequency matching condition (1) is implemented, it is more difficult to understand
whether the universality class remains the same. In Ref. [39] an estimate of the value of the
critical exponent ⌫eff ⌘ 2� + � ' 2/3 was provided for the mode-locked random laser model.
This result is quite different from the value 2� + � = 2 which characterizes the REM model,
even if we consider its numerical finite-size scaling analysis.

As an instance, the REM specific heat behaviour for small sizes N = 16,20, 24,28 is re-
ported in Fig. 6. Details about the numerical technique used are given in App. B. Even though
the simulated N are not very large, from the interpolation of the cV (T ) peaks it turns out
that ⌫eff = 2� + � = 1.9 ± 0.2. Strong finite size effects are there, as one can observe from
the estimate of the ↵ exponent, displaying a value ↵ = 0.52± 0.07, rather different from the
mean-field exponent ↵ = 0. Because of preasymptotic effects, indeed, the scaling relation
2� + �+↵= 2 (independent from the system dimension) appears to be violated.

4.1 Mean-field exponent

The exponent value ⌫eff = 2� + �= 2 can be derived through a simple argument, which does
not require any specific knowledge of the model and can be easily generalized. Let us consider
a mean-field theory described by the Ginzburg-Landau potential

V (�) =
1
2
⌧�2 +

g
4!
�4 , (20)

where � represents the global order parameter of the transition and ⌧ is the reduced tempera-
ture ⌧= T/Tc�1. This is the standard paradigm of a second order phase transition, as a glass
transition is known to be, as far as the thermodynamic potential and its derivatives (including
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 (5)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)
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Figure 3: Intensity spectrum Ik Eq. (18) for a single realization of quenched disorder
of the ML 4-phasor model with periodic boundary conditions on the frequencies and
N = 104. The spectrum is normalized and the modes k are divided by N . Temper-
ature T 2 [0.35,1.1] (color map on the right hand vertical bar). Notice the loss of
the spectrum curvature, due to periodic boundary conditions on the FMC and the
persistence of the isolated peaks.

Moving to the more realistic random laser models, where the basic ingredient for mode-
locking, the frequency matching condition (1) is implemented, it is more difficult to understand
whether the universality class remains the same. In Ref. [39] an estimate of the value of the
critical exponent ⌫eff ⌘ 2� + � ' 2/3 was provided for the mode-locked random laser model.
This result is quite different from the value 2� + � = 2 which characterizes the REM model,
even if we consider its numerical finite-size scaling analysis.

As an instance, the REM specific heat behaviour for small sizes N = 16,20, 24,28 is re-
ported in Fig. 6. Details about the numerical technique used are given in App. B. Even though
the simulated N are not very large, from the interpolation of the cV (T ) peaks it turns out
that ⌫eff = 2� + � = 1.9 ± 0.2. Strong finite size effects are there, as one can observe from
the estimate of the ↵ exponent, displaying a value ↵ = 0.52± 0.07, rather different from the
mean-field exponent ↵ = 0. Because of preasymptotic effects, indeed, the scaling relation
2� + �+↵= 2 (independent from the system dimension) appears to be violated.

4.1 Mean-field exponent

The exponent value ⌫eff = 2� + �= 2 can be derived through a simple argument, which does
not require any specific knowledge of the model and can be easily generalized. Let us consider
a mean-field theory described by the Ginzburg-Landau potential

V (�) =
1
2
⌧�2 +

g
4!
�4 , (20)

where � represents the global order parameter of the transition and ⌧ is the reduced tempera-
ture ⌧= T/Tc�1. This is the standard paradigm of a second order phase transition, as a glass
transition is known to be, as far as the thermodynamic potential and its derivatives (including
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 (5)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)
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or, equivalently, by changing T. In order to numerically simulate the model with
Monte Carlo algorithms, one can sample equilibrium configurations at different val-
ues of β = 1/T from the canonical probability distribution associated to the partition
function in equation (9) [36, 50, 51]. This is fully equivalent to sample the following
probability distribution

P [â]∝ e−H[â] δ

(
PN −

N∑

k=1

|âk|2
)
, (13)

where â denotes rescaled mode amplitude variables âk ≡ ak/T 1/4.
So far we have stressed all the formal analogies between the ML 4-phasor model

and other models showing localization: continuous locally unbounded variables and the
presence of a global constraint. The main difference between the 4-phasor partition func-
tion (9) and the partition function (10) of the DNLSE or of the free-bosons, is that in the
random laser case the joint distribution of the variables over which the global constraint
is imposed is not factorized. Therefore, the analytical results discussed in [17, 18] cannot
be straightforwardly extended to this case. Nevertheless, those systems share a feature
that turns out to be crucial also for the present model: the existence of an anomalous
‘pseudo-localized’ phase. In the non-interacting systems the anomaly is accompanied
by a negative temperature, that is, by a lack of the canonical-microcanonical ensembles
equivalence. The anomalous phase shows some signatures of incipient localization but
it is not a localized phase. As we are going to show, these are the signatures that we
find also in the ML 4-phasor model, by means of Monte Carlo numerical simulations
above the pumping rate threshold Pc (that is proportional to the intensity threshold εc
at fixed temperature) or, equivalently, below the critical temperature Tc, keeping the
spherical constraint fixed (ε=1).

3. Pseudo-localization

First of all let us provide a qualitative information about the behavior of the spectrum
when T is lowered, which can be read off equivalently as an increase of the spherical
constraint value: see equation (13). In figure 2, the time-average of the spectrum at
equilibrium is shown for different values of the temperature and a single instance of the
quenched disorder (a single realization of the couplings J ). It can be very clearly seen
that, as the pumping is increased (temperature is decreased) the overall intensity tends
to be heterogeneously distributed among the modes. This might hint that a localization
phenomenon in intensity occurs but it is not enough to establish it. Whether the system
truly localizes or not can be ascertained only from the study of the localization order
parameter, the participation ratio:

Y2 =

〈 ∑N
k=1 I

2
k

(
∑N

k=1 Ik)
2

〉
=

1

N 2

〈
N∑

k=1

I2k

〉
, (14)
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Figure 2. Intensity spectra I(k) = |ak|2/T for varying optical pumping rate P =
1/

√
T (ε=1), see equation (12), as a function of the mode index k for a single

realization of quenched disorder of the ML 4-phasor model with PBC on the fre-
quencies. Numerical simulations of size N =104. The spectra are normalized and
the modes k are divided by N. Color map: temperature T increases (optical power
decreases) from blue to red. Notice the absence of the spectrum curvature, due to
PBC on the FMC, and the presence of the isolated peaks below Tc " 0.61.

where Ik = |ak|2 and we have used that

N∑

k=1

Ik =N (15)

because of equation (2), with ε=1. The dependence on the number of degrees of freedom
of Y 2 can be easily rationalized in two extreme situations: equipartition and localization
of the mode intensity. Let us consider localization first: in this case a finite fraction of
the whole intensity is taken by a finite number of modes that does not increase with N,
see appendix A. That is, in the localized phase, a few modes k have intensity

Ik ∝N, (16)

whereas all the others I !=k = 0. Then, we have

N∑

k=1

I2k "
#loc modes∑

k=1

I2k ∝N 2.
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Figure 3. Main: participation ratio NY 2 of the mode intensities versus T at dif-
ferent systems sizes N. The vertical line is the asymptotic value of the critical
temperature for the system Tc ! 0.61 (from [52]). Inset: scaling of the participation
ratio near the peak for the three largest sizes, as NΨY2 versus T, with Ψ = 0.35> 0.
The peak height scaling is less than N, thus equation (14) tends to zero as N →∞.

This implies that in a localized phase the participation ratio Y 2 in the limit N →∞ is
a constant that does not depend on N :

localization ⇐⇒ lim
N→∞

Y2 = const. (17)

On the contrary, in the equipartite phase of nearly homogeneous spectral intensities,
any of the N modes has intensity Ik =O(1), so that in the thermodynamic limit

equipartition ⇐⇒ Y2 ∼
1

N
. (18)

Now we are ready to display, in figure 3, the first important quantitative information
obtained from the study of the equilibrium distribution of the intensity among modes. In
the figure we have plotted for convenience the average over quenched disorder ofNY2(T ),
which we expect of O(1) in the equipartite phase and of O(N) in a possible localized
phase. We observe that in the high temperature phase NY2 ∼ const and, therefore,
the system is in the equipartition regime. Under the critical point, indicated by the
vertical line at Tc = 0.61, which is the glass transition temperature for this specific
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or, equivalently, by changing T. In order to numerically simulate the model with
Monte Carlo algorithms, one can sample equilibrium configurations at different val-
ues of β = 1/T from the canonical probability distribution associated to the partition
function in equation (9) [36, 50, 51]. This is fully equivalent to sample the following
probability distribution

P [â]∝ e−H[â] δ

(
PN −

N∑

k=1

|âk|2
)
, (13)

where â denotes rescaled mode amplitude variables âk ≡ ak/T 1/4.
So far we have stressed all the formal analogies between the ML 4-phasor model

and other models showing localization: continuous locally unbounded variables and the
presence of a global constraint. The main difference between the 4-phasor partition func-
tion (9) and the partition function (10) of the DNLSE or of the free-bosons, is that in the
random laser case the joint distribution of the variables over which the global constraint
is imposed is not factorized. Therefore, the analytical results discussed in [17, 18] cannot
be straightforwardly extended to this case. Nevertheless, those systems share a feature
that turns out to be crucial also for the present model: the existence of an anomalous
‘pseudo-localized’ phase. In the non-interacting systems the anomaly is accompanied
by a negative temperature, that is, by a lack of the canonical-microcanonical ensembles
equivalence. The anomalous phase shows some signatures of incipient localization but
it is not a localized phase. As we are going to show, these are the signatures that we
find also in the ML 4-phasor model, by means of Monte Carlo numerical simulations
above the pumping rate threshold Pc (that is proportional to the intensity threshold εc
at fixed temperature) or, equivalently, below the critical temperature Tc, keeping the
spherical constraint fixed (ε=1).

3. Pseudo-localization

First of all let us provide a qualitative information about the behavior of the spectrum
when T is lowered, which can be read off equivalently as an increase of the spherical
constraint value: see equation (13). In figure 2, the time-average of the spectrum at
equilibrium is shown for different values of the temperature and a single instance of the
quenched disorder (a single realization of the couplings J ). It can be very clearly seen
that, as the pumping is increased (temperature is decreased) the overall intensity tends
to be heterogeneously distributed among the modes. This might hint that a localization
phenomenon in intensity occurs but it is not enough to establish it. Whether the system
truly localizes or not can be ascertained only from the study of the localization order
parameter, the participation ratio:

Y2 =

〈 ∑N
k=1 I

2
k

(
∑N

k=1 Ik)
2

〉
=

1

N 2

〈
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Figure 2. Intensity spectra I(k) = |ak|2/T for varying optical pumping rate P =
1/

√
T (ε=1), see equation (12), as a function of the mode index k for a single

realization of quenched disorder of the ML 4-phasor model with PBC on the fre-
quencies. Numerical simulations of size N =104. The spectra are normalized and
the modes k are divided by N. Color map: temperature T increases (optical power
decreases) from blue to red. Notice the absence of the spectrum curvature, due to
PBC on the FMC, and the presence of the isolated peaks below Tc " 0.61.

where Ik = |ak|2 and we have used that

N∑

k=1

Ik =N (15)

because of equation (2), with ε=1. The dependence on the number of degrees of freedom
of Y 2 can be easily rationalized in two extreme situations: equipartition and localization
of the mode intensity. Let us consider localization first: in this case a finite fraction of
the whole intensity is taken by a finite number of modes that does not increase with N,
see appendix A. That is, in the localized phase, a few modes k have intensity

Ik ∝N, (16)

whereas all the others I !=k = 0. Then, we have

N∑

k=1

I2k "
#loc modes∑

k=1

I2k ∝N 2.
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Figure 3. Main: participation ratio NY 2 of the mode intensities versus T at dif-
ferent systems sizes N. The vertical line is the asymptotic value of the critical
temperature for the system Tc ! 0.61 (from [52]). Inset: scaling of the participation
ratio near the peak for the three largest sizes, as NΨY2 versus T, with Ψ = 0.35> 0.
The peak height scaling is less than N, thus equation (14) tends to zero as N →∞.

This implies that in a localized phase the participation ratio Y 2 in the limit N →∞ is
a constant that does not depend on N :

localization ⇐⇒ lim
N→∞

Y2 = const. (17)

On the contrary, in the equipartite phase of nearly homogeneous spectral intensities,
any of the N modes has intensity Ik =O(1), so that in the thermodynamic limit

equipartition ⇐⇒ Y2 ∼
1

N
. (18)

Now we are ready to display, in figure 3, the first important quantitative information
obtained from the study of the equilibrium distribution of the intensity among modes. In
the figure we have plotted for convenience the average over quenched disorder ofNY2(T ),
which we expect of O(1) in the equipartite phase and of O(N) in a possible localized
phase. We observe that in the high temperature phase NY2 ∼ const and, therefore,
the system is in the equipartition regime. Under the critical point, indicated by the
vertical line at Tc = 0.61, which is the glass transition temperature for this specific
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Figure 3. Main: participation ratio NY 2 of the mode intensities versus T at dif-
ferent systems sizes N. The vertical line is the asymptotic value of the critical
temperature for the system Tc ! 0.61 (from [52]). Inset: scaling of the participation
ratio near the peak for the three largest sizes, as NΨY2 versus T, with Ψ = 0.35> 0.
The peak height scaling is less than N, thus equation (14) tends to zero as N →∞.

This implies that in a localized phase the participation ratio Y 2 in the limit N →∞ is
a constant that does not depend on N :

localization ⇐⇒ lim
N→∞

Y2 = const. (17)

On the contrary, in the equipartite phase of nearly homogeneous spectral intensities,
any of the N modes has intensity Ik =O(1), so that in the thermodynamic limit

equipartition ⇐⇒ Y2 ∼
1

N
. (18)

Now we are ready to display, in figure 3, the first important quantitative information
obtained from the study of the equilibrium distribution of the intensity among modes. In
the figure we have plotted for convenience the average over quenched disorder ofNY2(T ),
which we expect of O(1) in the equipartite phase and of O(N) in a possible localized
phase. We observe that in the high temperature phase NY2 ∼ const and, therefore,
the system is in the equipartition regime. Under the critical point, indicated by the
vertical line at Tc = 0.61, which is the glass transition temperature for this specific
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or, equivalently, by changing T. In order to numerically simulate the model with
Monte Carlo algorithms, one can sample equilibrium configurations at different val-
ues of β = 1/T from the canonical probability distribution associated to the partition
function in equation (9) [36, 50, 51]. This is fully equivalent to sample the following
probability distribution

P [â]∝ e−H[â] δ

(
PN −

N∑

k=1

|âk|2
)
, (13)

where â denotes rescaled mode amplitude variables âk ≡ ak/T 1/4.
So far we have stressed all the formal analogies between the ML 4-phasor model

and other models showing localization: continuous locally unbounded variables and the
presence of a global constraint. The main difference between the 4-phasor partition func-
tion (9) and the partition function (10) of the DNLSE or of the free-bosons, is that in the
random laser case the joint distribution of the variables over which the global constraint
is imposed is not factorized. Therefore, the analytical results discussed in [17, 18] cannot
be straightforwardly extended to this case. Nevertheless, those systems share a feature
that turns out to be crucial also for the present model: the existence of an anomalous
‘pseudo-localized’ phase. In the non-interacting systems the anomaly is accompanied
by a negative temperature, that is, by a lack of the canonical-microcanonical ensembles
equivalence. The anomalous phase shows some signatures of incipient localization but
it is not a localized phase. As we are going to show, these are the signatures that we
find also in the ML 4-phasor model, by means of Monte Carlo numerical simulations
above the pumping rate threshold Pc (that is proportional to the intensity threshold εc
at fixed temperature) or, equivalently, below the critical temperature Tc, keeping the
spherical constraint fixed (ε=1).

3. Pseudo-localization

First of all let us provide a qualitative information about the behavior of the spectrum
when T is lowered, which can be read off equivalently as an increase of the spherical
constraint value: see equation (13). In figure 2, the time-average of the spectrum at
equilibrium is shown for different values of the temperature and a single instance of the
quenched disorder (a single realization of the couplings J ). It can be very clearly seen
that, as the pumping is increased (temperature is decreased) the overall intensity tends
to be heterogeneously distributed among the modes. This might hint that a localization
phenomenon in intensity occurs but it is not enough to establish it. Whether the system
truly localizes or not can be ascertained only from the study of the localization order
parameter, the participation ratio:

Y2 =

〈 ∑N
k=1 I

2
k

(
∑N

k=1 Ik)
2

〉
=

1

N 2

〈
N∑

k=1

I2k

〉
, (14)
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Figure 2. Intensity spectra I(k) = |ak|2/T for varying optical pumping rate P =
1/

√
T (ε=1), see equation (12), as a function of the mode index k for a single

realization of quenched disorder of the ML 4-phasor model with PBC on the fre-
quencies. Numerical simulations of size N =104. The spectra are normalized and
the modes k are divided by N. Color map: temperature T increases (optical power
decreases) from blue to red. Notice the absence of the spectrum curvature, due to
PBC on the FMC, and the presence of the isolated peaks below Tc " 0.61.

where Ik = |ak|2 and we have used that

N∑

k=1

Ik =N (15)

because of equation (2), with ε=1. The dependence on the number of degrees of freedom
of Y 2 can be easily rationalized in two extreme situations: equipartition and localization
of the mode intensity. Let us consider localization first: in this case a finite fraction of
the whole intensity is taken by a finite number of modes that does not increase with N,
see appendix A. That is, in the localized phase, a few modes k have intensity

Ik ∝N, (16)

whereas all the others I !=k = 0. Then, we have

N∑

k=1

I2k "
#loc modes∑

k=1

I2k ∝N 2.
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Figure 5. Marginal distribution of spectral intensity averaged over quenched dis-
order for the system size N =82 at all the simulated temperatures. Color map:
as in figure 2. At high temperature the distribution is exponentially decaying as
revealed by the linear trend in semilogarithmic scale (red curves). By lowering the
temperature deviation from monotonicity can be observed (blue curves) in relation
to the onset of the pseudo-localized phase.

the size, the steeper neff decreases. In the inset, we plot the rescaled effective fraction
of degrees of freedom for the three largest sizes. In the low temperature phase they
collapse on each other with an exponent α! 1/3. Thus, in the thermodynamic limit,
neff tends to 0 below the RSB critical point, marking the breaking of equipartition.

The transition taking place at Tc, besides being a glass transition, can, thus, be char-
acterized as the transition to a phase with a thermodynamic anomaly, the breakdown
of equipartition, in an analogous way for which we have a breakdown of ensemble equi-
valence in a non-interacting system such as the DNLSE.

The analogy with the DNLSE holds also for what concerns the spectral intensity
distributions, cf figures 5 and 6. We can observe in figure 5 that, as temperature is
lowered, the occurrence of the anomalous phase with lack of equipartition is signaled
by the onset of fat tails of the quenched average distribution P (|a|2). By looking at the
distributions for single instances of the random couplings J, see figure 6, one can under-
stand that the tails in the average distribution come about because of the occurrence of
a secondary peak at large intensity, which, in a hypothetical strictly condensate phase,
would become the typical ‘condensate bump’. This peak also appears in the marginal
distribution of energy in the DNLSE (see figure 5 in [17]). In that case, though, the
non-monotonic behavior of the marginal intensity distribution eventually signals the
approach to a truly localized phase.
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Figure 6. Marginal intensity distributions for single instances of the quenched dis-
order. Data are referred to the simulated size N =82 at the temperature T =0.3.
We notice that some of the samples (such as sample 2, 3, 4 and 5) exhibit a
peak for large mode intensity of the distribution, corresponding to accumulation
of the intensity on a few modes. The position of the peak is sample dependent. On
the other hand, other samples behave as sample 1, exhibiting only thick tails in
the marginal intensity distribution. The result of averaging over all the disordered
samples is reported in the sixth panel, which corresponds to the lowest temperature
intensity distribution in figure 5.

4. Conclusions

In this work we have presented a detailed analysis of which signatures of intensity
localization in light modes spectrum are emerging in the glassy phase of light when
the interaction between modes is represented by the so-called ‘mode-locked’ p-spin
model with PBC on the mode frequencies. This model offers a unique benchmark to
study the coexistence between localization and phase-space fragmentation, thanks to its
peculiarity with respect to the most commonly studied models of disordered systems: it
has continuous, locally unbound, variables with non-linear diluted interactions. These
are diluted enough to allow for relevant intensity heterogeneities at low T, cf figure 2.

From a careful finite-size study of the participation ratio of the mode intensities
we have been able to assess that, although some signatures of incipient localization
can be found, the glassy phase of light is not, strictly speaking, localized in intensity.
This means that the results of our analysis are not compatible with single light modes
carrying an extensive amount of intensity, i.e. there is no k such that |ak|2 ∼N . We

https://doi.org/10.1088/1742-5468/acd2c4 15

Intensity pseudo-localized phase in the glassy random laser

J.S
tat.

M
ech.(2023)

053302

Figure 3. Main: participation ratio NY 2 of the mode intensities versus T at dif-
ferent systems sizes N. The vertical line is the asymptotic value of the critical
temperature for the system Tc ! 0.61 (from [52]). Inset: scaling of the participation
ratio near the peak for the three largest sizes, as NΨY2 versus T, with Ψ = 0.35> 0.
The peak height scaling is less than N, thus equation (14) tends to zero as N →∞.

This implies that in a localized phase the participation ratio Y 2 in the limit N →∞ is
a constant that does not depend on N :

localization ⇐⇒ lim
N→∞

Y2 = const. (17)

On the contrary, in the equipartite phase of nearly homogeneous spectral intensities,
any of the N modes has intensity Ik =O(1), so that in the thermodynamic limit

equipartition ⇐⇒ Y2 ∼
1

N
. (18)

Now we are ready to display, in figure 3, the first important quantitative information
obtained from the study of the equilibrium distribution of the intensity among modes. In
the figure we have plotted for convenience the average over quenched disorder ofNY2(T ),
which we expect of O(1) in the equipartite phase and of O(N) in a possible localized
phase. We observe that in the high temperature phase NY2 ∼ const and, therefore,
the system is in the equipartition regime. Under the critical point, indicated by the
vertical line at Tc = 0.61, which is the glass transition temperature for this specific
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the other hand, other samples behave as sample 1, exhibiting only thick tails in
the marginal intensity distribution. The result of averaging over all the disordered
samples is reported in the sixth panel, which corresponds to the lowest temperature
intensity distribution in figure 5.
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localization in light modes spectrum are emerging in the glassy phase of light when
the interaction between modes is represented by the so-called ‘mode-locked’ p-spin
model with PBC on the mode frequencies. This model offers a unique benchmark to
study the coexistence between localization and phase-space fragmentation, thanks to its
peculiarity with respect to the most commonly studied models of disordered systems: it
has continuous, locally unbound, variables with non-linear diluted interactions. These
are diluted enough to allow for relevant intensity heterogeneities at low T, cf figure 2.
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Figure 5. Marginal distribution of spectral intensity averaged over quenched dis-
order for the system size N =82 at all the simulated temperatures. Color map:
as in figure 2. At high temperature the distribution is exponentially decaying as
revealed by the linear trend in semilogarithmic scale (red curves). By lowering the
temperature deviation from monotonicity can be observed (blue curves) in relation
to the onset of the pseudo-localized phase.

the size, the steeper neff decreases. In the inset, we plot the rescaled effective fraction
of degrees of freedom for the three largest sizes. In the low temperature phase they
collapse on each other with an exponent α! 1/3. Thus, in the thermodynamic limit,
neff tends to 0 below the RSB critical point, marking the breaking of equipartition.

The transition taking place at Tc, besides being a glass transition, can, thus, be char-
acterized as the transition to a phase with a thermodynamic anomaly, the breakdown
of equipartition, in an analogous way for which we have a breakdown of ensemble equi-
valence in a non-interacting system such as the DNLSE.

The analogy with the DNLSE holds also for what concerns the spectral intensity
distributions, cf figures 5 and 6. We can observe in figure 5 that, as temperature is
lowered, the occurrence of the anomalous phase with lack of equipartition is signaled
by the onset of fat tails of the quenched average distribution P (|a|2). By looking at the
distributions for single instances of the random couplings J, see figure 6, one can under-
stand that the tails in the average distribution come about because of the occurrence of
a secondary peak at large intensity, which, in a hypothetical strictly condensate phase,
would become the typical ‘condensate bump’. This peak also appears in the marginal
distribution of energy in the DNLSE (see figure 5 in [17]). In that case, though, the
non-monotonic behavior of the marginal intensity distribution eventually signals the
approach to a truly localized phase.
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Figure 6. Marginal intensity distributions for single instances of the quenched dis-
order. Data are referred to the simulated size N =82 at the temperature T =0.3.
We notice that some of the samples (such as sample 2, 3, 4 and 5) exhibit a
peak for large mode intensity of the distribution, corresponding to accumulation
of the intensity on a few modes. The position of the peak is sample dependent. On
the other hand, other samples behave as sample 1, exhibiting only thick tails in
the marginal intensity distribution. The result of averaging over all the disordered
samples is reported in the sixth panel, which corresponds to the lowest temperature
intensity distribution in figure 5.

4. Conclusions

In this work we have presented a detailed analysis of which signatures of intensity
localization in light modes spectrum are emerging in the glassy phase of light when
the interaction between modes is represented by the so-called ‘mode-locked’ p-spin
model with PBC on the mode frequencies. This model offers a unique benchmark to
study the coexistence between localization and phase-space fragmentation, thanks to its
peculiarity with respect to the most commonly studied models of disordered systems: it
has continuous, locally unbound, variables with non-linear diluted interactions. These
are diluted enough to allow for relevant intensity heterogeneities at low T, cf figure 2.

From a careful finite-size study of the participation ratio of the mode intensities
we have been able to assess that, although some signatures of incipient localization
can be found, the glassy phase of light is not, strictly speaking, localized in intensity.
This means that the results of our analysis are not compatible with single light modes
carrying an extensive amount of intensity, i.e. there is no k such that |ak|2 ∼N . We
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Figure 3. Main: participation ratio NY 2 of the mode intensities versus T at dif-
ferent systems sizes N. The vertical line is the asymptotic value of the critical
temperature for the system Tc ! 0.61 (from [52]). Inset: scaling of the participation
ratio near the peak for the three largest sizes, as NΨY2 versus T, with Ψ = 0.35> 0.
The peak height scaling is less than N, thus equation (14) tends to zero as N →∞.

This implies that in a localized phase the participation ratio Y 2 in the limit N →∞ is
a constant that does not depend on N :

localization ⇐⇒ lim
N→∞

Y2 = const. (17)

On the contrary, in the equipartite phase of nearly homogeneous spectral intensities,
any of the N modes has intensity Ik =O(1), so that in the thermodynamic limit

equipartition ⇐⇒ Y2 ∼
1

N
. (18)

Now we are ready to display, in figure 3, the first important quantitative information
obtained from the study of the equilibrium distribution of the intensity among modes. In
the figure we have plotted for convenience the average over quenched disorder ofNY2(T ),
which we expect of O(1) in the equipartite phase and of O(N) in a possible localized
phase. We observe that in the high temperature phase NY2 ∼ const and, therefore,
the system is in the equipartition regime. Under the critical point, indicated by the
vertical line at Tc = 0.61, which is the glass transition temperature for this specific
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Figure 6. Marginal intensity distributions for single instances of the quenched dis-
order. Data are referred to the simulated size N =82 at the temperature T =0.3.
We notice that some of the samples (such as sample 2, 3, 4 and 5) exhibit a
peak for large mode intensity of the distribution, corresponding to accumulation
of the intensity on a few modes. The position of the peak is sample dependent. On
the other hand, other samples behave as sample 1, exhibiting only thick tails in
the marginal intensity distribution. The result of averaging over all the disordered
samples is reported in the sixth panel, which corresponds to the lowest temperature
intensity distribution in figure 5.
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In this work we have presented a detailed analysis of which signatures of intensity
localization in light modes spectrum are emerging in the glassy phase of light when
the interaction between modes is represented by the so-called ‘mode-locked’ p-spin
model with PBC on the mode frequencies. This model offers a unique benchmark to
study the coexistence between localization and phase-space fragmentation, thanks to its
peculiarity with respect to the most commonly studied models of disordered systems: it
has continuous, locally unbound, variables with non-linear diluted interactions. These
are diluted enough to allow for relevant intensity heterogeneities at low T, cf figure 2.

From a careful finite-size study of the participation ratio of the mode intensities
we have been able to assess that, although some signatures of incipient localization
can be found, the glassy phase of light is not, strictly speaking, localized in intensity.
This means that the results of our analysis are not compatible with single light modes
carrying an extensive amount of intensity, i.e. there is no k such that |ak|2 ∼N . We
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with the RSB transition point, in the numerical uncertainty of the finite size scaling
for the simulated systems. We will show that a fundamental issue in the occurrence of
localization or pseudo-localization of intensity in the low temperature/high pumping
phase is the connectivity of the nonlinear mode interaction.

2. Model and objectives

The leading model for the mode-locking random laser is [2, 25, 50, 51]

H[a] =−
∑

k|FMC(k)

Jk1k2k3k4ak1ak2ak3ak4 + c.c., (1)

where the ‘spins’ ak are the complex amplitudes of the light modes of angular frequency
ωk , satisfying the global ‘spherical’ constraint

∑

k

|ak|2 = E = εN, (2)

where ε= E/N is the optical power per mode available in the system and the quenched
disordered couplings Jk1k2k3k4 are distributed according to

P(Jk1k2k3k4) =
1√
2πσ2

4

exp
{
−
J2
k1k2k3k4

2σ2
4

}
, (3)

where

σ2
4 =

4!J2
4

2N 2
. (4)

The modes involved in each interaction term must satisfy the frequency matching
condition (FMC)

FMC(k) : |ωk1 −ωk2 +ωk3 −ωk4|! γ, (5)

where γ is the single mode linewidth. In the simulated system the mode frequencies are
chosen according to the simplifying scheme of being ‘comb-like’ distributed,

ωk = ω0 + δω k, (6)

so that the FMC conditions simply read as

|k1− k2 + k3− k4|= 0 ,ki = 1, . . . ,N. (7)

At difference with the model studied in [25] we impose periodic boundary conditions
(PBCs) on the mode-frequencies, i.e. given any two mode indices ka and kb their distance
will be
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.

ȧn(t) = �ı
@H

@a⇤n
� µ an(t) + ⌘n(t) (2)

Fn[{a}|{J}] ' �ı
@

@a⇤n
H[{a}|{J}]� µ an(t) (3)

ak(!k) = Ak(!k)eı�k(!k)

Ik = |ak|2,�k = arg(ak)
{Ik,�k,!k}

I,�,!
J
Ik(t) = |ak(t)|2

hIk(t)i =
1
T

R t0+T

t0
dt Ik(t)

[? ? ]

H = �
1

2

1,NX

jk

Jjkaja
⇤

k �
1

4!

1,NX

jklm

Jjklmaja
⇤

kala
⇤

m , (4)

where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 (5)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)
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with the RSB transition point, in the numerical uncertainty of the finite size scaling
for the simulated systems. We will show that a fundamental issue in the occurrence of
localization or pseudo-localization of intensity in the low temperature/high pumping
phase is the connectivity of the nonlinear mode interaction.

2. Model and objectives

The leading model for the mode-locking random laser is [2, 25, 50, 51]

H[a] =−
∑

k|FMC(k)

Jk1k2k3k4ak1ak2ak3ak4 + c.c., (1)

where the ‘spins’ ak are the complex amplitudes of the light modes of angular frequency
ωk , satisfying the global ‘spherical’ constraint

∑

k

|ak|2 = E = εN, (2)

where ε= E/N is the optical power per mode available in the system and the quenched
disordered couplings Jk1k2k3k4 are distributed according to

P(Jk1k2k3k4) =
1√
2πσ2

4

exp
{
−
J2
k1k2k3k4

2σ2
4

}
, (3)

where

σ2
4 =

4!J2
4

2N 2
. (4)

The modes involved in each interaction term must satisfy the frequency matching
condition (FMC)

FMC(k) : |ωk1 −ωk2 +ωk3 −ωk4|! γ, (5)

where γ is the single mode linewidth. In the simulated system the mode frequencies are
chosen according to the simplifying scheme of being ‘comb-like’ distributed,

ωk = ω0 + δω k, (6)

so that the FMC conditions simply read as

|k1− k2 + k3− k4|= 0 ,ki = 1, . . . ,N. (7)

At difference with the model studied in [25] we impose periodic boundary conditions
(PBCs) on the mode-frequencies, i.e. given any two mode indices ka and kb their distance
will be
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E(r, t) =
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ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each
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with the RSB transition point, in the numerical uncertainty of the finite size scaling
for the simulated systems. We will show that a fundamental issue in the occurrence of
localization or pseudo-localization of intensity in the low temperature/high pumping
phase is the connectivity of the nonlinear mode interaction.

2. Model and objectives

The leading model for the mode-locking random laser is [2, 25, 50, 51]

H[a] =−
∑

k|FMC(k)

Jk1k2k3k4ak1ak2ak3ak4 + c.c., (1)

where the ‘spins’ ak are the complex amplitudes of the light modes of angular frequency
ωk , satisfying the global ‘spherical’ constraint

∑

k

|ak|2 = E = εN, (2)

where ε= E/N is the optical power per mode available in the system and the quenched
disordered couplings Jk1k2k3k4 are distributed according to

P(Jk1k2k3k4) =
1√
2πσ2

4

exp
{
−
J2
k1k2k3k4

2σ2
4

}
, (3)

where

σ2
4 =

4!J2
4

2N 2
. (4)

The modes involved in each interaction term must satisfy the frequency matching
condition (FMC)

FMC(k) : |ωk1 −ωk2 +ωk3 −ωk4|! γ, (5)

where γ is the single mode linewidth. In the simulated system the mode frequencies are
chosen according to the simplifying scheme of being ‘comb-like’ distributed,

ωk = ω0 + δω k, (6)

so that the FMC conditions simply read as

|k1− k2 + k3− k4|= 0 ,ki = 1, . . . ,N. (7)

At difference with the model studied in [25] we impose periodic boundary conditions
(PBCs) on the mode-frequencies, i.e. given any two mode indices ka and kb their distance
will be

https://doi.org/10.1088/1742-5468/acd2c4 5

2

Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
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ak(t) Ek(r) e
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The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
a linear o↵-diagonal e↵ective damping coupling [? ? ? ]. In terms of the interaction parameters, we also define the
strength of the openness as the inverse strength of the nonlinear interaction coupling with respect to the o↵-diagonal

linear coupling ↵ = J4/J = J (4)
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In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each
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with the RSB transition point, in the numerical uncertainty of the finite size scaling
for the simulated systems. We will show that a fundamental issue in the occurrence of
localization or pseudo-localization of intensity in the low temperature/high pumping
phase is the connectivity of the nonlinear mode interaction.

2. Model and objectives

The leading model for the mode-locking random laser is [2, 25, 50, 51]

H[a] =−
∑

k|FMC(k)

Jk1k2k3k4ak1ak2ak3ak4 + c.c., (1)

where the ‘spins’ ak are the complex amplitudes of the light modes of angular frequency
ωk , satisfying the global ‘spherical’ constraint

∑

k

|ak|2 = E = εN, (2)

where ε= E/N is the optical power per mode available in the system and the quenched
disordered couplings Jk1k2k3k4 are distributed according to

P(Jk1k2k3k4) =
1√
2πσ2

4

exp
{
−
J2
k1k2k3k4

2σ2
4

}
, (3)

where

σ2
4 =

4!J2
4

2N 2
. (4)

The modes involved in each interaction term must satisfy the frequency matching
condition (FMC)

FMC(k) : |ωk1 −ωk2 +ωk3 −ωk4|! γ, (5)

where γ is the single mode linewidth. In the simulated system the mode frequencies are
chosen according to the simplifying scheme of being ‘comb-like’ distributed,

ωk = ω0 + δω k, (6)

so that the FMC conditions simply read as

|k1− k2 + k3− k4|= 0 ,ki = 1, . . . ,N. (7)

At difference with the model studied in [25] we impose periodic boundary conditions
(PBCs) on the mode-frequencies, i.e. given any two mode indices ka and kb their distance
will be
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mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched
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with the RSB transition point, in the numerical uncertainty of the finite size scaling
for the simulated systems. We will show that a fundamental issue in the occurrence of
localization or pseudo-localization of intensity in the low temperature/high pumping
phase is the connectivity of the nonlinear mode interaction.

2. Model and objectives

The leading model for the mode-locking random laser is [2, 25, 50, 51]

H[a] =−
∑

k|FMC(k)

Jk1k2k3k4ak1ak2ak3ak4 + c.c., (1)

where the ‘spins’ ak are the complex amplitudes of the light modes of angular frequency
ωk , satisfying the global ‘spherical’ constraint

∑

k

|ak|2 = E = εN, (2)

where ε= E/N is the optical power per mode available in the system and the quenched
disordered couplings Jk1k2k3k4 are distributed according to

P(Jk1k2k3k4) =
1√
2πσ2

4

exp
{
−
J2
k1k2k3k4

2σ2
4

}
, (3)

where

σ2
4 =

4!J2
4

2N 2
. (4)

The modes involved in each interaction term must satisfy the frequency matching
condition (FMC)

FMC(k) : |ωk1 −ωk2 +ωk3 −ωk4|! γ, (5)

where γ is the single mode linewidth. In the simulated system the mode frequencies are
chosen according to the simplifying scheme of being ‘comb-like’ distributed,

ωk = ω0 + δω k, (6)

so that the FMC conditions simply read as

|k1− k2 + k3− k4|= 0 ,ki = 1, . . . ,N. (7)

At difference with the model studied in [25] we impose periodic boundary conditions
(PBCs) on the mode-frequencies, i.e. given any two mode indices ka and kb their distance
will be
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint
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The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance
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p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also
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where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
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with the RSB transition point, in the numerical uncertainty of the finite size scaling
for the simulated systems. We will show that a fundamental issue in the occurrence of
localization or pseudo-localization of intensity in the low temperature/high pumping
phase is the connectivity of the nonlinear mode interaction.

2. Model and objectives

The leading model for the mode-locking random laser is [2, 25, 50, 51]

H[a] =−
∑

k|FMC(k)

Jk1k2k3k4ak1ak2ak3ak4 + c.c., (1)

where the ‘spins’ ak are the complex amplitudes of the light modes of angular frequency
ωk , satisfying the global ‘spherical’ constraint

∑

k

|ak|2 = E = εN, (2)

where ε= E/N is the optical power per mode available in the system and the quenched
disordered couplings Jk1k2k3k4 are distributed according to

P(Jk1k2k3k4) =
1√
2πσ2

4

exp
{
−
J2
k1k2k3k4

2σ2
4

}
, (3)

where

σ2
4 =

4!J2
4

2N 2
. (4)

The modes involved in each interaction term must satisfy the frequency matching
condition (FMC)

FMC(k) : |ωk1 −ωk2 +ωk3 −ωk4|! γ, (5)

where γ is the single mode linewidth. In the simulated system the mode frequencies are
chosen according to the simplifying scheme of being ‘comb-like’ distributed,

ωk = ω0 + δω k, (6)

so that the FMC conditions simply read as

|k1− k2 + k3− k4|= 0 ,ki = 1, . . . ,N. (7)

At difference with the model studied in [25] we impose periodic boundary conditions
(PBCs) on the mode-frequencies, i.e. given any two mode indices ka and kb their distance
will be
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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where the sums are unrestricted and ai are N complex amplitude variables subject to the global power constraint

E = ✏N =
NX

n=1

|an|
2 (5)

The coupling strengths are here quenched independent random variables with mean J (2)
0 /Np�1 and variance

p! J2
p/(2N

p�1) (p = 2, 4), whose scaling with N guarantee an extensive Hamiltonian and thermodynamic convergence.
The corresponding probability distribution can be taken Gaussian without, for large N , loss of generality. Let us also

define the degree of disorder RJ = J0/J and the pumping rate P = ✏
p
�J0 with J0 = J (2)

0 + J (4)
0 and J = J2 + J4 and

where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness

of the cavity can be encoded into the definition of the electromagnetic modes using, e.g., the system-and-bath approach
of Ref. [? ], in which the contributions of radiative and localized modes are separated by Feshbach projection [? ] onto
two orthogonal subspaces. This leads to an e↵ective theory on the subspace of localized modes in which they exchange
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linear coupling ↵ = J4/J = J (4)
0 /J0 2 [0, 1]. In a closed cavity the linear dumping is absent and it corresponds to

↵ = 1.
In a standard semiclassical approach, the field is expressed in the slow amplitude basis, equation (1), where each

mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
times of population inversion and amplification processes, so that the atomic variables can be adiabatically removed
and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala
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m that meet the frequency matching condition [? ? ? ],
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with the RSB transition point, in the numerical uncertainty of the finite size scaling
for the simulated systems. We will show that a fundamental issue in the occurrence of
localization or pseudo-localization of intensity in the low temperature/high pumping
phase is the connectivity of the nonlinear mode interaction.

2. Model and objectives

The leading model for the mode-locking random laser is [2, 25, 50, 51]

H[a] =−
∑

k|FMC(k)

Jk1k2k3k4ak1ak2ak3ak4 + c.c., (1)

where the ‘spins’ ak are the complex amplitudes of the light modes of angular frequency
ωk , satisfying the global ‘spherical’ constraint

∑

k

|ak|2 = E = εN, (2)

where ε= E/N is the optical power per mode available in the system and the quenched
disordered couplings Jk1k2k3k4 are distributed according to

P(Jk1k2k3k4) =
1√
2πσ2

4

exp
{
−
J2
k1k2k3k4

2σ2
4

}
, (3)

where

σ2
4 =

4!J2
4

2N 2
. (4)

The modes involved in each interaction term must satisfy the frequency matching
condition (FMC)

FMC(k) : |ωk1 −ωk2 +ωk3 −ωk4|! γ, (5)

where γ is the single mode linewidth. In the simulated system the mode frequencies are
chosen according to the simplifying scheme of being ‘comb-like’ distributed,

ωk = ω0 + δω k, (6)

so that the FMC conditions simply read as

|k1− k2 + k3− k4|= 0 ,ki = 1, . . . ,N. (7)

At difference with the model studied in [25] we impose periodic boundary conditions
(PBCs) on the mode-frequencies, i.e. given any two mode indices ka and kb their distance
will be
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Introduction Modes are expressed as slow amplitude contributions to the electromagnetic field expansion in terms
of spatial mode eigenvectors Ek(r):

E(r, t) =
X

k

ak(t) Ek(r) e
ı!kt + c.c. (1)

The complex amplitudes ak(t) of these slow modes turn out to be the fundamental degree of freedom in the statistical
mechanical modeling of interacting modes [? ? ], while the irregularity of their spatial profiles results into quenched

disordered mode interactions. By quenched we mean that the interaction strengths are time independent [? ], as it
occurs, in practice, when they change on time-scales much longer then the typical amplification time-scales, possibly
longer than the RL lifetime itself.
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where � is the inverse temperature associated with the noise.
This model can be derived in a multimode laser theory for open and irregular random resonators [? ]. The openness
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mode has a defined frequency. The lifetimes of these modes are assumed to be much longer than the characteristic
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and result in an e↵ective interaction between the electromagnetic modes. The nonlinear couplings are indeed nonzero
only for the terms aja⇤kala

⇤

m that meet the frequency matching condition [? ? ? ],

|!j � !k + !l � !m| . � , (6)

2

|k1 � k2 + k3 � k4| = 0

Ik = |ak|2

H[a] = �
X

k|FMC(k)

Jk1k2k3k4ak1ak2ak3ak4 + c.c. = J1234a1a2a3a4 + J1235a1a2a3a5 + J1239a1a2a3a9 + . . .

|!i � !j + !k � !l| < �

= O(N3)

Tc = 0.61(3)
✓

N
4

◆
⇥
✓

2

3N
+

1

3N3

◆

H[a] = �J1234a1a2a3a4 =
1

O(N)
O(N2) = O(N)

H[a] = �J1234a1a2a3a4 =
1

O(N1/2)
O(N2) = O(N3/2) � O(N)

H[a] = �J1234a1a2a3a4 =
1

O(N3/2)
O(N2) = O(N1/2) ⌧ O(N)

H[a] = �J1234a1a2a3a4 =
1

O(N)
O(N2) = O(N)

min
a

H[a] = O(N)

{a} : |ak| 2 ⇤ /
p
N , |ak|��2 ⇤ = 0

{a} : |ak| ' 1 8 k = 1, . . . , N

NX

k=1

|ak|2
✏

= N

ak ! a0k ) �E ⌘ H[a0]�H[a]

O(N2)

�2
p = J2

k1...kp
/ 1

Np�2

�2
4 = J2

k1k2k3k4
/ 1

N

�2
4 = J2

k1k2k3k4
/ 1

N2

�2
4 = J2

k1k2k3k4
/ 1

N3

c ⇠ Np

c ⇠ Np�1

c ⇠ N<p�1

c ⇠ Np/2

2

|k1 � k2 + k3 � k4| = 0

Ik = |ak|2

H[a] = �
X

k|FMC(k)

Jk1k2k3k4ak1ak2ak3ak4 + c.c. = J1234a1a2a3a4 + J1235a1a2a3a5 + J1239a1a2a3a9 + . . .

|!i � !j + !k � !l| < �

= O(N3)

Tc = 0.61(3)
✓

N
4

◆
⇥
✓

2

3N
+

1

3N3

◆

H[a] = �J1234a1a2a3a4 =
1

O(N)
O(N2) = O(N)

H[a] = �J1234a1a2a3a4 =
1

O(N1/2)
O(N2) = O(N3/2) � O(N)

H[a] = �J1234a1a2a3a4 =
1

O(N3/2)
O(N2) = O(N1/2) ⌧ O(N)

H[a] = �J1234a1a2a3a4 =
1

O(N)
O(N2) = O(N)

min
a

H[a] = O(N)

{a} : |ak| 2 ⇤ /
p
N , |ak|��2 ⇤ = 0

{a} : |ak| ' 1 8 k = 1, . . . , N

NX

k=1

|ak|2
✏

= N

ak ! a0k ) �E ⌘ H[a0]�H[a]

O(N2)

�2
p = J2

k1...kp
/ 1

Np�2

�2
4 = J2

k1k2k3k4
/ 1

N

�2
4 = J2

k1k2k3k4
/ 1

N2

�2
4 = J2

k1k2k3k4
/ 1

N3

c ⇠ Np

c ⇠ Np�1

c ⇠ N<p�1

c ⇠ Np/2

Monte Carlo simulations of the spherical 4-phasor ML RL



Random lasers as 
complex disordered 
systems 
Luca Leuzzi

Why  pseudo-condensation ?

INTENSITY CONDENSATION

INTENSITY EQUIPARTITION
2

|ak| ' 1, 8 k

c =
# couplings

# modes

|ak2⇤| = O(
p
N), |ak/2⇤| = 0

c ⇠ N
c ⇠ N,N2

c ⇠ N2

c ⇠ N3

c ⇠ N3, N4

c ⇠ N4

I seguenti esercizi - assolutamente opzionali a i fini dell’esame - possono essere svolti dagli

studenti ed inviati via email a luca.leuzzi@uniroma1.it in copia scansionata oppure scritti in

latex e compilati in pdf. A tal fine si rende disponibile anche il file sorgente esercizi.tex.

Gli esercizi sono assegnati via via che viene svolto il programma e vengono raggruppati in quattro

o cinque gruppi con date di scadenza distinte e progressive. Gli esercizi consegnati in tempo e svolti

correttamente contribuiranno positivamente al voto di esame, con le seguenti prescirzioni.

• Gli esercizi danno un bonus se sono corretti. Non ci sono malus.
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• Ad ogni esercizio svolto correttamente è assegnato il voto 31. Agli esercizi sbagliati o incom-

pleti non viene assegnato alcun voto e non contano in alcun modo ai fini della valutazione

finale dell’esame.

2

|ak| ' 1, 8 k

c =
# couplings

# modes

|ak2⇤| = O(
p
N), |ak/2⇤| = 0

c ⇠ N
c ⇠ N,N2

c ⇠ N2

c ⇠ N3

c ⇠ N3, N4

c ⇠ N4

I seguenti esercizi - assolutamente opzionali a i fini dell’esame - possono essere svolti dagli

studenti ed inviati via email a luca.leuzzi@uniroma1.it in copia scansionata oppure scritti in

latex e compilati in pdf. A tal fine si rende disponibile anche il file sorgente esercizi.tex.

Gli esercizi sono assegnati via via che viene svolto il programma e vengono raggruppati in quattro

o cinque gruppi con date di scadenza distinte e progressive. Gli esercizi consegnati in tempo e svolti

correttamente contribuiranno positivamente al voto di esame, con le seguenti prescirzioni.

• Gli esercizi danno un bonus se sono corretti. Non ci sono malus.
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J. Niedda, G. Gradenigo, LL, JSTAT 053302  (2023)

For any p-interacting number of modes, any spherical p-spin model

Why  pseudo-condensation ?
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Conclusions
• Random lasers can be effectively modelled by statistical mechanics of 

disordered systems (mode-locking, spectral properties, lasing threshold,…)
• Some random lasers display glassy (multi-equilibria) features and allow for 

directly measuring the RSB order parameter distribution
• Monte Carlo dynamics of the leading model, the spherical 4-phasor mode-

locked model, yield evidence for  
Mean-field universality class for the lasing critical point
RSB at high pumping/low temperature
and pseudo-condensation of the overall intensity (connection with 
connectivity of the interaction network)
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• In progress: 
* Monte Carlo simulations at and off-equilibrium with continuous band 
of frequencies, real material gain profiles, losses (M Benedetti, G 
Trinca-Cintioli, J Niedda)
* Interpolation between analytic and experimental IFO, out of 
equilibrium effects (G Trinca Cintioli, J Niedda)
* Analytic theory for spin-glasses on mode-locked graphs — merit 
factor revisited (J Niedda, G Parisi)
* Mode-locked random lasers on sparse graphs avoiding 
condensation (M Benedetti)
* Measurements campaign on different random laser compounds 
(solids, viscous liquids, organic, inorganic, 2D, 3D, varying mode 
extensions, ..) probed by different pumping lasers (ns, ps, fs pulses) 
to tune disorder, understand the relationship between mode 
extension and coupling network connectivity, deepen the reliability of 
photonics measure of the Parisi P(q)  (CNR-NANOTEC, D Sanvitto, L 
De Marco, I Viola, M De Giorgi, …)

Post-doc positions opening soon on the MUR-funded project
Statics and Dynamics of Spin Glass and Disordered Systems: 
Theory and Numerics to Understand Experiments. 
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What is a complete basis in an open system?
Fox-Li modes, quasi-bound states, constant flux modes, ….

Strong Interac2ons in Mul2mode Random Lasers 
Türeci, Ge, Ro]er, Douglas Stone 2008

Feschbach projec-on onto radia-ve and localized mode subspaces
Hackenbroich, Viviescas, Haken 2003

OPEN CAVITY: 
(i) Mirror cavi-es with leakages: there will be also radia-ve modes, whose frequencies  

take values in a con-nuous dominion. Different modes can have the same 
frequency.  

(ii) Mirror-less lasers in random media, with inhomogeneous op-cal suscep-bility 
profiles. Discrete lasing frequencies will not be all equispaced and may overlap. 
Furthermore,  the “op-cal cycle” and the “roundtrip -me”  are not defined. Their 
random analogues  depend on the sca]erers structure.  

Non-diagonal linear contribu-on to the Hamiltonian. 

3

Linear optical susceptibility

D(r) = ✏0[1 + �
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Refractive index profile and relative permittivity

n
2(r) = ✏r(r) for real and complex (12)

Maxwell equations

r ^H = @tD (13)
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In a linear dielectric resonator, in absence of nonlinear polarization Pnl = 0, Maxwell equations are solved by super-
position of normal modes of frequencies {!n} and eigenvectors {E(r),H(r)}:
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In presence of a small nonlinear polarization Pnl & 0 the solution can still be written as a superposition of normal
modes with complex amplitude coe�cients an(t), slowly varying in time. For Pnl ! 0, a(t) ! const.
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The nonlinear polarization as well can be expanded in normal modes with complex coe�cients [14]
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Integrating out fast times we define the Hamiltonian for the dynamics of the slowly varying complex amplitudes:
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Random graph ML laser

quenched amplitude or amplitude equipar--on            : 4-XY phase model

ML

ML: A. Marruzzo and LL, PRB 2015

Standard*Mode%Locking*Laser**
We*know*already*of*a*similar*equa0on*for*the*completely*closed*

and*ordered*limit:**
Haus*standard*ML*laser*master*equa0on*

5

Complex Langevin dynamics

ȧn = �ı
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+ ⌘n(t); h⌘n(t)i = 0; h⌘n(t)⌘m(s)i = 2T �(t� s)�nm ' 2T �(t� s)�nm (26)

mode - locking
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Haus master equation
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ȧn = �ı
@H

@a⇤n
+ ⌘n(t); h⌘n(t)i = 0; h⌘n(t)⌘m(s)i = 2T �(t� s)�nm ' 2T �(t� s)�nm (26)

mode - locking

�(!) = �0 + �
0
! +O(!2) (27)

Haus master equation
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rd

H = ≠

Nÿ

n=1
g(0)

n
|an|

2
≠ J

ÿ

Ên1 ≠Ên2 +Ên3 ≠Ên4 =0
an1aú

n2an3aú

n4 + c.c.

9



Random lasers as 
complex disordered 
systems 
Luca Leuzzi

Random graph ML laser

quenched amplitude or amplitude equipar--on            : 4-XY phase model

ML

ML: A. Marruzzo and LL, PRB 2015

Standard*Mode%Locking*Laser**
We*know*already*of*a*similar*equa0on*for*the*completely*closed*

and*ordered*limit:**
Haus*standard*ML*laser*master*equa0on*

5

Complex Langevin dynamics
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FIG. 1. GIOVANNI: set-up figure, LUCA: 2D spectrum Left: Set-up image. MEMENTO! DA FARE con
i dati della figura di destra. Center: 2D spectrum x ≠ ⁄. Right: Instance of multi-Gaussian interpolation of the
intensity spectrum of GaAs crystal powder in a single 10ms data acquisition time at coordinate x = 217(7) µm. MEMENTO!
CHANGE label in the figure The minimal number NG of Gaussian curves used is determined by the interpolating set
yielding the least Akaike parameter. Depending on the x coordinate, NG turns out to very between 5 and 10 [see Methods for
other examples].

Resonances identification104

Peaks in the spectra are identified by performing multiple fitting with linear combinations of a variable number105

of Gaussians, as described in Methods, Sec. B. To avoid overfitting, the optimal set of curves is chosen according106

to the Akaike Information Criterion Akaike [30]. An instance of the outcome of our fitting procedure is reported107

in Fig. 1, right panel, where we plot raw data compared to multi-Gaussian interpolating functions. Eventually,108

we build a complete list of all resonances for each spectrum produced in each one of the di�erent data acquisitions109

t = 1, . . . , Nspectra = 1000 in the series of measurements. Each intensity peak k of the spectrum t is determined by110

its frequency Êk, its line-width “k, its position xk and the FWHM �xk in its position coordinate:111

I
(t)

k © I
(t)(xk, �xk; Êk, “k)

MEMENTO! In experiment May15 (unique power) each pixel corresponds to 1.2 µm. In Feb16112

(varying power) each pixel corresponds to 0.69 µm. Ricordiamoci di cambiare tutti i riferimenti in µm113

nelle figure. LAST THING TO DO114

Strong correlation discrimination115

Of each set of intensity peaks we compute the normalized fourth order cumulants of their intensities c4(Êj , Êk, Êl, Êm),116

cf. Methods, Sec. B. Since there are many spurious e�ects that may contribute to a correlation among modes, in117

order to identify anomalously large correlations we need a reference for the background correlation. We, thus, compute118

three kind of multi-point correlations:119

• SOIR, the correlations of all quadruplets composed by possibly spatially self overlapping intensity resonances,120

i.e., occurring at the same planar position x; we recall that the spectra are taken in a 10 µm wide interval in the121

other planar direction y and from a z ƒ?0 µm thick powder, so that not all resonances at same x are guaranteed122

to be actually spatially overlapping, see Methods;123

• NOIR, the correlations quadruplets composed by non overlapping intensity resonances, i.e., occurring at well124

distinct x positions in the same spectral data acquisition;125

• BG, the background correlations among resonances pertaining to di�erent spectra, i.e., acquired after di�erent126

pump shots.127

In the left panel of Fig. 2 we display the probability distributions of the SOIR � four-point correlation functions c4 for128

di�erent acquisition times: 10, 100 and 1000 ms. These are candidate nonlinearly interacting sets in any scenario. In129

the center panel of Fig. 2 we display the NOIR c4. The latter set might still be composed by interacting modes in an130

extended mode scenario. Finally, in the right panel of Fig. 2 the BG c4 are plotted.131

The key point is to have contemporarily the spectrum and the position of the resonance
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In ultrafast multimode lasers, mode locking is implemented bymeans of saturable absorbers or modulators,
allowing for very short pulses. This occurs because of nonlinear interactions of modes with well equispaced
frequencies. Though theory predicts that, in the absence of any device, mode locking would occur in random
lasers, this has never been demonstrated so far. Through the analysis of multimode correlations we provide
clear evidence for nonlinear mode coupling in random lasers. The behavior of multiresonance intensity
correlations is tested against the nonlinear frequency matching condition equivalent to the one underlying
phase locking in ordered ultrafast lasers. Nontrivially large correlations are clearly observed for spatially
overlapping resonances that sensitively depend on the frequency matching condition to be satisfied,
eventually demonstrating the occurrence of nonlinear mode-locked mode coupling. This is the first example,
to our knowledge, of an experimental realization of self-starting mode locking in random lasers, allowing for
many new developments in the design and use of nanostructured devices.

DOI: 10.1103/PhysRevLett.126.173901

When light propagates through a random medium, the
electromagnetic field provides a complicated emission
pattern as light undergoes multiple scattering. In random
lasers [1–8] such scattering allows for population inversion
under external pumping. Random lasers are made of an
optically active medium, providing gain, and randomly
placed scatterers, providing the high refraction index and
the feedback mechanism leading to amplification by
stimulated emission. They do not require complicated
construction and rigid optical alignment, have a low
cost, undirectional emissions, high operational flexibility
and give rise to a number of promising applications in the
field of speckle-free imaging [9,10], remote sensing
[11,12], medical diagnostics [13–16] and optoelectronic
devices [17,18]. Many works have been devoted to the
random laser mode control, e.g., by tuning concentration
of scatterers [2], by changing pumping profile [19] or
temperature [20,21], and else gain material [22] in a
number of diverse approaches [23–25]. Effective engi-
neered control requires a deep knowledge of the physical
mechanisms underlying the behavior of random lasers.
Here we investigate one of these mechanisms in the
presence of intrinsic, nonperturbative, randomness.
We exploit a statistical mechanical model of light modes

interacting in a random medium excited by external
pumping to extract information about fundamental mech-
anisms of a random laser. Our aim is understanding
whether a random laser built without specific technological
requirements exhibits the basic feature of standard pulsed

lasers: mode locking. Standard laser theory shows that the
dominant mode interaction above threshold is highly non-
linear [26]. In the random laser case, mode couplings are
predicted to be disordered, both in the interaction network
and in the coupling values. Therefore, the understanding of
cross-mode interactions is an open issue and fundamental
questions need to be answered about their strength, sign,
and number of simultaneously involved modes.
Clearly, modes must spatially overlap to display mode

locking [27–29], as observed in experiments on specifically
designed random lasers, where pairwise (linear) interaction
manifests because of two modes competition for the overall
intensity within the same optical volume [19]. In Ref. [30] a
step towards nonlinear mode locking was taken, including a
graphene saturable absorber to yield a quasi mode locking
of coherent feedback in random fiber laser. With the
assistance of the saturable absorber, resonant modes are
selected and mode locked. Spatial overlap is not, however,
a sufficient condition for interaction, nor does it provide
any information about the coupling values. At the same
time, the exact structure of the spatial distribution of the
modes in most random lasers is hard to determine, which
makes a quantitative analysis of the interacting parameters
rather hard. Eventually, there is no saturable absorber in
random lasers and a possible nonlinear matching of
frequencies, that is, the locking of more than two modes,
would occur as a self-starting phenomenon [31].
We have developed an analysis of random systems of

interacting light modes providing information about the

PHYSICAL REVIEW LETTERS 126, 173901 (2021)
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FIG. 1. GIOVANNI: set-up figure, LUCA: 2D spectrum Left: Set-up image. MEMENTO! DA FARE con
i dati della figura di destra. Center: 2D spectrum x ≠ ⁄. Right: Instance of multi-Gaussian interpolation of the
intensity spectrum of GaAs crystal powder in a single 10ms data acquisition time at coordinate x = 217(7) µm. MEMENTO!
CHANGE label in the figure The minimal number NG of Gaussian curves used is determined by the interpolating set
yielding the least Akaike parameter. Depending on the x coordinate, NG turns out to very between 5 and 10 [see Methods for
other examples].

Resonances identification104

Peaks in the spectra are identified by performing multiple fitting with linear combinations of a variable number105

of Gaussians, as described in Methods, Sec. B. To avoid overfitting, the optimal set of curves is chosen according106

to the Akaike Information Criterion Akaike [30]. An instance of the outcome of our fitting procedure is reported107

in Fig. 1, right panel, where we plot raw data compared to multi-Gaussian interpolating functions. Eventually,108

we build a complete list of all resonances for each spectrum produced in each one of the di�erent data acquisitions109

t = 1, . . . , Nspectra = 1000 in the series of measurements. Each intensity peak k of the spectrum t is determined by110

its frequency Êk, its line-width “k, its position xk and the FWHM �xk in its position coordinate:111
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MEMENTO! In experiment May15 (unique power) each pixel corresponds to 1.2 µm. In Feb16112

(varying power) each pixel corresponds to 0.69 µm. Ricordiamoci di cambiare tutti i riferimenti in µm113

nelle figure. LAST THING TO DO114

Strong correlation discrimination115

Of each set of intensity peaks we compute the normalized fourth order cumulants of their intensities c4(Êj , Êk, Êl, Êm),116

cf. Methods, Sec. B. Since there are many spurious e�ects that may contribute to a correlation among modes, in117

order to identify anomalously large correlations we need a reference for the background correlation. We, thus, compute118

three kind of multi-point correlations:119

• SOIR, the correlations of all quadruplets composed by possibly spatially self overlapping intensity resonances,120

i.e., occurring at the same planar position x; we recall that the spectra are taken in a 10 µm wide interval in the121

other planar direction y and from a z ƒ?0 µm thick powder, so that not all resonances at same x are guaranteed122

to be actually spatially overlapping, see Methods;123

• NOIR, the correlations quadruplets composed by non overlapping intensity resonances, i.e., occurring at well124

distinct x positions in the same spectral data acquisition;125

• BG, the background correlations among resonances pertaining to di�erent spectra, i.e., acquired after di�erent126

pump shots.127

In the left panel of Fig. 2 we display the probability distributions of the SOIR � four-point correlation functions c4 for128

di�erent acquisition times: 10, 100 and 1000 ms. These are candidate nonlinearly interacting sets in any scenario. In129

the center panel of Fig. 2 we display the NOIR c4. The latter set might still be composed by interacting modes in an130

extended mode scenario. Finally, in the right panel of Fig. 2 the BG c4 are plotted.131
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To each experiment t of the series, a grid of mode intensities is associated: I(t)(x,�x;�;��), where �x and �� are the Full
Width Half Maximum of the interpolated distributions around, respectively, x and � (��n = 2

p
2 ln 2�n).

We consider the same single mode n as present in the spectra of two different experiments tA and tB of the series if

x{tA}
n = x{tB}

n

|�{tA}
n � �{tB}

n | < ��

2
��A

n ���B
n

��A
n +��B

n

< �̄�

where the absolute and relative uncertainties �� and �̄� are chosen depending on the resolution required. �x is not considered
in the analysis but it is of the order of 6 pixels. I. e., 7 µm in the first series of experiments and 4 µm in the second one.

In both series of experiments we used �� = 1.5 nm and �̄� = 0.1. For spectra of lower resolution and less intense peaks we
also considered a rougher coarse graining, where two parameters in the mode identification are �� = 4.5 nm and �̄� = 0.3. We
resorted to this less precise approximation exclusively when the modes’ statistics is too low to provide clear behaviors of the
distributions of c4 values.

V. MULTI-POINT CORRELATION DEFINITION

The fourth order connected correlation function of intensity peaks Ij ⌘ I(!j), according to the van Kampen construction,
reads:

C4(!j ,!k,!l,!m) = hIjIkIlImic = C(0)
4 � C(1)

4 + 2C(2)
4 � 6C(3)

4 (6)

where

C(0)
4 = hIjIkIlImi (7)

C(1)
4 = hIjIkIlihImi+ hIjIkImihIli+ hIjImIlihIki+ hImIkIlihIji

+hIjIkihIlImi+ hIjIlihIkImi+ hIjImihIkIli

C(2)
4 = hIjIkihIlihImi+ hIjIlihIkihImi+ hIjImihIkihIli

+hIkIlihIjihImi+ hIkImihIjihIli+ hIlImihIjihIki

C(3)
4 = �6hIjihIkihIlihImi

where the average is taken over the statistical sample of all the combinations of the same set of modes displayed in experiments
at fixed external condition and stable pumping. We, further, normalize C4 to the mean square displacements of the intensities of
the modes, i.e.,

c4(!j ,!k,!l,!m) ⌘
C4(!j ,!k,!l,!m)

�j(!j)�k(!k)�l(!l)�m(!m)

�j(!j) =
q

h(Ij � hIji)
2
i .

VI. RESONANCES LOCALIZATION IN MONOCHROMATOR VERTICAL DIRECTION Y
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Correlation vs the mode locking condition on the matching of mode 
frequencies

mode-coupling constants and applied it to the emission
spectra of a GaAs powder-based random laser, experimen-
tally demonstrating the nonlinear coupling of spatially
overlapping modes and its mode-locking nature.
Although the mode-locking phenomenon is known to be

nonlinear and light modes are expected to be coupled, the
mechanism and nature of this nonlinear coupling in random
lasers has never been experimentally tested. The theory for
stationary regimes in a random laser consists in an effective
stochastic nonlinear potential dynamics for the mode slow
amplitudes aðtÞ (see Supplemental Material [32]) whose
Hamiltonian reads

H ¼ −
X

k2jFMCðkÞ
gð2Þk1k2

ak1a
$
k2

−
1

2

X

k4jFMCðkÞ
gð4Þk1k2k3k4

ak1a
$
k2
ak3a

$
k4
þ c:c:; ð1Þ

where FMC stands for the frequency matching condition,

jωk1 − ωk2 þ ωk3 − ωk4 j < γ; γ ≡
X4

j¼1

γkj ; ð2Þ

where ωk is the angular frequency of the mode k and γk’s
are the linewidths of the resonances. Further complexity of
the mode interaction is comprised inside the coupling
coefficients

gð4Þk1k2k3k4
∝
Z

V
drχ̂ð3Þðr;ωk1 ;ωk2 ;ωk3 ;ωk4Þ

..

.
Ek1ðrÞEk2ðrÞEk3ðrÞEk4ðrÞ; ð3Þ

where χ̂ð3Þ is the nonlinear susceptibility tensor of the
medium and EkðrÞ is the eigenmode of frequency ωk.
In standard lasers FMC is induced by nonlinear devices

[26] and it induces phase locking [33–35] and ultrashort
pulses [26,36–41]. In random lasers no ad hoc device is
present in the resonator and even the definition of resonator
is far from straightforward [42]. Consequently, mode
locking would be, in this case, a self-starting phenomenon
due to randomness.
Contrarily to standard multimode lasers [43,44], in

random lasers mode locking cannot be identified by an
overall temporal optical pulse (though each mode has a
time dynamics following the pumping pulse [45]). This
comes about because the frequencies of the lasing modes
are not equispaced and, therefore, their convolution does
not give rise to a pulse IðtÞ in time. This can be explicitly
seen in theoretical models where mode locking is imple-
mented together with unperturbative randomness [46,47].
We therefore demonstrate a different approach to detect it,
based on intensity cross-correlation measurements of a
GaAs random laser modes at different wavelengths.

Our random laser is composed by a thin deposition of
GaAs powder, whose properties are reported in the
Supplemental Material [32], which includes Ref. [48]. A
Gaussian laser beam (780 nm excitation wavelength) illumi-
nates the sample propagating perpendicular to the deposition
plane ðx; yÞ. The detection line is along the z direction in
transmission configuration (i.e., at the opposite side of the
sample with respect to the excitation line). The sample
thickness is irregular in the z direction, though always thinner
than 100 μm (details in the Supplemental Material [32]).
The emission intensity in random lasers is typically too

low to allow a good resolution in all dimensions (x, y, λ)
within a single shot. In our experiments we have emission
spectra from a given slice of the sample (10 μm wide)
resolved in the x coordinate (x, λ) for 100, 1000, and 10000
shots, corresponding to 10, 100, 1000 ms integration time.
These acquisition times allowed us to obtain a spectral
resolution high enough to adequately probe the presence of
nonlinear interaction. An instance of a space-wavelength
spectrum is displayed in the top panel of Fig. 1.
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FIG. 1. (Top panel) Instance of an intensity spectrum vs
position and wavelength of a GaAs crystal powder sample with
10 ms data acquisition time (100 shots). The red line represents
the section of the spectrum at position x ¼ 217 μm that is
displayed in the bottom panel. (Bottom panel) The red points
are the intensity spectrum vs wavelength λ at coordinate
x ¼ 217 μm, corresponding to the red cut in the top 2D plot.
The blue continuous curve is a multi-Gaussian interpolation with
a weighted combination of NG ¼ 7 Gaussian curves. In this
instance NG ¼ 7 turns out to be the number yielding the largest
likelihood with data avoiding overfitting (see Supplemental
Material [32]).
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In order to detect nonlinear mode coupling by a
statistical analysis we first have to identify and characterize
mode resonances. In all acquired spectra at all available
positions (x) resonances are identified by multiple fitting
with linear combinations of a variable number of Gaussian
distributions chosen according to the Akaike Information
Criterion (see Supplemental Material [32]). An instance of
this procedure is reported in Fig. 1, bottom panel, where we
plot raw data (in red dots) and compare them to a
multi-Gaussian interpolating function. Eventually, we build
a complete list of all resonances for each spectrum
produced in each one of the different data acquisitions
t ¼ 1;…; Nspectra ¼ 1000 in the series of measurements.

Each intensity peak IðtÞk of the spectrum t is identified by its
angular frequency ωk, its linewidth γk, its position xk,
and the FWHM Δxk in its position coordinate:
IðtÞk ≡ IðtÞðxk;Δxk;ωk; γkÞ.
Once we have the resonances we must study their

correlations. Since our aim is to detect nonlinear inter-
actions we have to go beyond the standard analysis of
intensity correlations in randommedia [49,50] and consider
the multipoint intensity correlations related to the χð3Þ

nonlinearity, i.e., the four-points correlations. We then
collect all quadruplets of intensity resonances Ij, Ik, Il,
Im occurring in the Nspectra spectra. A single quadruplet
ði; j; k; lÞ occurs in more spectra, if not in all, though in
each spectrum the intensities fluctuate, eventually provid-
ing a statistical ensemble of quadruplets. For each quad-
ruplet we compute the intensity four point connected
correlation function

c4ðωj;ωk;ωl;ωmÞ ¼
hIjIkIlImic
σjσkσlσm

ð4Þ

with σj ¼ hI2ji − hIji2 and where the average hð…Þi is
taken over the ensemble of the realizations of the given
quadruplet ði; j; k; lÞ in the many emissions acquired.
The function c4 is a cumulant: it has the property of

being small when the resonances are (nonlinearly) uncor-
related and large when they are very correlated (see
Supplemental Material [32]). Indeed, it is zero whenever
the intensity variables can be divided into two independent
sets, so that it is apt to detect the nonlinear properties of the
random laser (where the two-point intensity-intensity
correlations [50] would not suffice). We can, then, dis-
criminate between small and large looking at the distribu-
tion of values of these intensity correlations. However,
because of the many spurious effects contributing to
correlation among modes, in order to identify anomalously
large correlations due to mode coupling we first need a
reference for what small means, which we will term
background (BG) correlation. Therefore, we analyze the
distributions of the c4 in a sample dataset composed by all
sets of four distinct modes, each one of them pertaining to a

different spectrum. In this case no contribution to intensity
correlation can be induced by interaction of modes com-
peting for the energy pumped into the system.
We, consequently, compute the distribution of the c4

values of all sets of four different resonances occurring at
the same position x in the same spectrum, that we call the
self-overlapping intensity resonances (SOIR), and of all
sets of four intensity peaks of modes at different wave-
length and at different x in the same spectrum, i.e., the
nonoverlapping intensity resonances (NOIR).
In Fig. 2 we display the distributions of the SOIR

correlation functions c4 (top), of the NOIR c4 (mid) and
of the BG c4 (bottom). According to Eq. (3), sets of SOIR
might be induced by nonlinearly interacting modes because
their space overlap is certainly nonzero. Sets of NOIR
might still be related to interacting modes in an extended
mode scenario where EkðrÞ ≠ 0 for r in a large portion of
space [51].
The largest values appear always on the SOIR sets.

Comparing the distributions in Fig. 2 as the number of
acquired emissions increases, the dominion of possible
values for the SOIR correlations extends its extremes in the
tails of the distribution, while the distributions of NOIR and
background c4 appear insensitive to the change in acquis-
ition time. Moreover, no difference can be appreciated
between distributions of c4 of NOIR and BG resonances
(cf. Fig. 2). Thus, even if extended modes could be present
in the sample, the present analysis cannot discriminate
weak long-range mode coupling with respect to noise.
In Fig. 3 we superimpose instances of the normalized

distributions for the background, the NOIR and the SOIR
correlations for an acquisition time of 100 ms, clearly
showing that the tails of the SOIR distribution extend well
beyond the 3σ of the other two. With extremely high
confidence, we can, finally, operatively identify nonlinearly
interacting sets of modes as those whose multimode
correlation is larger than the 3σ of the background
correlation distribution and we can conclude that spatially
overlapping modes interact nonlinearly in the random
lasing regime.
Do the interacting modes (SOIR with large c4)

also satisfy FMC (2)? To test it we introduce a “FMC
parameter”

Δ4 ≡ jω1 − ω2 þ ω3 − ω4j
γ1 þ γ2 þ γ3 þ γ4

ð5Þ

representing the frequency matching (un)satisfaction. The
smaller Δ4, the better the matching among angular frequen-
cies of four modes. To relate interaction and mode locking
we, then, look for a direct link between smallΔ4 values and
very large intensity correlations, in the tails of the SOIR
distribution Pðc4Þ.
In order to understand the relationship between mode

locking and couplings we analyze the behavior of the mean
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Self-starting mode-locking in random lasers

In order to detect nonlinear mode coupling by a
statistical analysis we first have to identify and characterize
mode resonances. In all acquired spectra at all available
positions (x) resonances are identified by multiple fitting
with linear combinations of a variable number of Gaussian
distributions chosen according to the Akaike Information
Criterion (see Supplemental Material [32]). An instance of
this procedure is reported in Fig. 1, bottom panel, where we
plot raw data (in red dots) and compare them to a
multi-Gaussian interpolating function. Eventually, we build
a complete list of all resonances for each spectrum
produced in each one of the different data acquisitions
t ¼ 1;…; Nspectra ¼ 1000 in the series of measurements.

Each intensity peak IðtÞk of the spectrum t is identified by its
angular frequency ωk, its linewidth γk, its position xk,
and the FWHM Δxk in its position coordinate:
IðtÞk ≡ IðtÞðxk;Δxk;ωk; γkÞ.
Once we have the resonances we must study their

correlations. Since our aim is to detect nonlinear inter-
actions we have to go beyond the standard analysis of
intensity correlations in randommedia [49,50] and consider
the multipoint intensity correlations related to the χð3Þ

nonlinearity, i.e., the four-points correlations. We then
collect all quadruplets of intensity resonances Ij, Ik, Il,
Im occurring in the Nspectra spectra. A single quadruplet
ði; j; k; lÞ occurs in more spectra, if not in all, though in
each spectrum the intensities fluctuate, eventually provid-
ing a statistical ensemble of quadruplets. For each quad-
ruplet we compute the intensity four point connected
correlation function

c4ðωj;ωk;ωl;ωmÞ ¼
hIjIkIlImic
σjσkσlσm

ð4Þ

with σj ¼ hI2ji − hIji2 and where the average hð…Þi is
taken over the ensemble of the realizations of the given
quadruplet ði; j; k; lÞ in the many emissions acquired.
The function c4 is a cumulant: it has the property of

being small when the resonances are (nonlinearly) uncor-
related and large when they are very correlated (see
Supplemental Material [32]). Indeed, it is zero whenever
the intensity variables can be divided into two independent
sets, so that it is apt to detect the nonlinear properties of the
random laser (where the two-point intensity-intensity
correlations [50] would not suffice). We can, then, dis-
criminate between small and large looking at the distribu-
tion of values of these intensity correlations. However,
because of the many spurious effects contributing to
correlation among modes, in order to identify anomalously
large correlations due to mode coupling we first need a
reference for what small means, which we will term
background (BG) correlation. Therefore, we analyze the
distributions of the c4 in a sample dataset composed by all
sets of four distinct modes, each one of them pertaining to a

different spectrum. In this case no contribution to intensity
correlation can be induced by interaction of modes com-
peting for the energy pumped into the system.
We, consequently, compute the distribution of the c4

values of all sets of four different resonances occurring at
the same position x in the same spectrum, that we call the
self-overlapping intensity resonances (SOIR), and of all
sets of four intensity peaks of modes at different wave-
length and at different x in the same spectrum, i.e., the
nonoverlapping intensity resonances (NOIR).
In Fig. 2 we display the distributions of the SOIR

correlation functions c4 (top), of the NOIR c4 (mid) and
of the BG c4 (bottom). According to Eq. (3), sets of SOIR
might be induced by nonlinearly interacting modes because
their space overlap is certainly nonzero. Sets of NOIR
might still be related to interacting modes in an extended
mode scenario where EkðrÞ ≠ 0 for r in a large portion of
space [51].
The largest values appear always on the SOIR sets.

Comparing the distributions in Fig. 2 as the number of
acquired emissions increases, the dominion of possible
values for the SOIR correlations extends its extremes in the
tails of the distribution, while the distributions of NOIR and
background c4 appear insensitive to the change in acquis-
ition time. Moreover, no difference can be appreciated
between distributions of c4 of NOIR and BG resonances
(cf. Fig. 2). Thus, even if extended modes could be present
in the sample, the present analysis cannot discriminate
weak long-range mode coupling with respect to noise.
In Fig. 3 we superimpose instances of the normalized

distributions for the background, the NOIR and the SOIR
correlations for an acquisition time of 100 ms, clearly
showing that the tails of the SOIR distribution extend well
beyond the 3σ of the other two. With extremely high
confidence, we can, finally, operatively identify nonlinearly
interacting sets of modes as those whose multimode
correlation is larger than the 3σ of the background
correlation distribution and we can conclude that spatially
overlapping modes interact nonlinearly in the random
lasing regime.
Do the interacting modes (SOIR with large c4)

also satisfy FMC (2)? To test it we introduce a “FMC
parameter”

Δ4 ≡ jω1 − ω2 þ ω3 − ω4j
γ1 þ γ2 þ γ3 þ γ4

ð5Þ

representing the frequency matching (un)satisfaction. The
smaller Δ4, the better the matching among angular frequen-
cies of four modes. To relate interaction and mode locking
we, then, look for a direct link between smallΔ4 values and
very large intensity correlations, in the tails of the SOIR
distribution Pðc4Þ.
In order to understand the relationship between mode

locking and couplings we analyze the behavior of the mean
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square displacement σc4 of the distribution computed
exclusively on those quadruplets whose frequencies yield
Δ4 values in a given interval (of width 0.01). In Fig. 4 we
plot the σc4 of the distributions of correlations among
SOIR, NOIR, and BG sets versus Δ4. We observe no
dependence on Δ4 for BG and NOIR correlations. On the
contrary, the σc4 of SOIR correlations decreases with Δ4. In
the top panel of Fig. 2 and in Fig. 3 we saw that the SOIR
distributions have large tails, corresponding to interacting

sets. In view of such σc4ðΔ4Þ behavior we now understand
that large correlations (in distributions with large σ) are due
to contributions from the histogram sections at small Δ4. In
Figs. 4, 5 we see that increasing Δ4 the σc4 of the SOIR
correlation becomes of the order of the one of the back-
ground and this means that nontrivially strong correlations
only occur when frequencies are locked.
This behavior occurs at all acquisition times used in

experiments, cf. Fig. 5. In Fig. 5 we call ΔML
4 the value

below which surely interacting modes can be neatly
discriminated from background correlation. We observe
that ΔML

4 decreases, decreasing the acquisition time.
According to Eq. (2), in the limit of the single shot
experiment, interaction would be allowed only among
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FIG. 3. Normalized distributions of c4 at acquisition time
100 ms for background correlations, nonoverlapping resonance
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vertical lines correspond to #3σ of the background correlation
distribution.
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Variance correlation vs the matching of mode frequencies

square displacement σc4 of the distribution computed
exclusively on those quadruplets whose frequencies yield
Δ4 values in a given interval (of width 0.01). In Fig. 4 we
plot the σc4 of the distributions of correlations among
SOIR, NOIR, and BG sets versus Δ4. We observe no
dependence on Δ4 for BG and NOIR correlations. On the
contrary, the σc4 of SOIR correlations decreases with Δ4. In
the top panel of Fig. 2 and in Fig. 3 we saw that the SOIR
distributions have large tails, corresponding to interacting

sets. In view of such σc4ðΔ4Þ behavior we now understand
that large correlations (in distributions with large σ) are due
to contributions from the histogram sections at small Δ4. In
Figs. 4, 5 we see that increasing Δ4 the σc4 of the SOIR
correlation becomes of the order of the one of the back-
ground and this means that nontrivially strong correlations
only occur when frequencies are locked.
This behavior occurs at all acquisition times used in

experiments, cf. Fig. 5. In Fig. 5 we call ΔML
4 the value

below which surely interacting modes can be neatly
discriminated from background correlation. We observe
that ΔML

4 decreases, decreasing the acquisition time.
According to Eq. (2), in the limit of the single shot
experiment, interaction would be allowed only among

0.0001

 0.001

 0.01

 0.1

 1

-4 -2  0  2  4

P(c4)

3
bg

c4

x = 217 m - diff shots (bg)
x = 7, 143, 222, 313 m

x = 217 m

FIG. 3. Normalized distributions of c4 at acquisition time
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correlations and spatial overlapping resonance correlations. The
vertical lines correspond to #3σ of the background correlation
distribution.
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Self-starting mode-locking in random lasers

Variance correlation vs the matching of mode frequencies

In order to detect nonlinear mode coupling by a
statistical analysis we first have to identify and characterize
mode resonances. In all acquired spectra at all available
positions (x) resonances are identified by multiple fitting
with linear combinations of a variable number of Gaussian
distributions chosen according to the Akaike Information
Criterion (see Supplemental Material [32]). An instance of
this procedure is reported in Fig. 1, bottom panel, where we
plot raw data (in red dots) and compare them to a
multi-Gaussian interpolating function. Eventually, we build
a complete list of all resonances for each spectrum
produced in each one of the different data acquisitions
t ¼ 1;…; Nspectra ¼ 1000 in the series of measurements.

Each intensity peak IðtÞk of the spectrum t is identified by its
angular frequency ωk, its linewidth γk, its position xk,
and the FWHM Δxk in its position coordinate:
IðtÞk ≡ IðtÞðxk;Δxk;ωk; γkÞ.
Once we have the resonances we must study their

correlations. Since our aim is to detect nonlinear inter-
actions we have to go beyond the standard analysis of
intensity correlations in randommedia [49,50] and consider
the multipoint intensity correlations related to the χð3Þ

nonlinearity, i.e., the four-points correlations. We then
collect all quadruplets of intensity resonances Ij, Ik, Il,
Im occurring in the Nspectra spectra. A single quadruplet
ði; j; k; lÞ occurs in more spectra, if not in all, though in
each spectrum the intensities fluctuate, eventually provid-
ing a statistical ensemble of quadruplets. For each quad-
ruplet we compute the intensity four point connected
correlation function

c4ðωj;ωk;ωl;ωmÞ ¼
hIjIkIlImic
σjσkσlσm

ð4Þ

with σj ¼ hI2ji − hIji2 and where the average hð…Þi is
taken over the ensemble of the realizations of the given
quadruplet ði; j; k; lÞ in the many emissions acquired.
The function c4 is a cumulant: it has the property of

being small when the resonances are (nonlinearly) uncor-
related and large when they are very correlated (see
Supplemental Material [32]). Indeed, it is zero whenever
the intensity variables can be divided into two independent
sets, so that it is apt to detect the nonlinear properties of the
random laser (where the two-point intensity-intensity
correlations [50] would not suffice). We can, then, dis-
criminate between small and large looking at the distribu-
tion of values of these intensity correlations. However,
because of the many spurious effects contributing to
correlation among modes, in order to identify anomalously
large correlations due to mode coupling we first need a
reference for what small means, which we will term
background (BG) correlation. Therefore, we analyze the
distributions of the c4 in a sample dataset composed by all
sets of four distinct modes, each one of them pertaining to a

different spectrum. In this case no contribution to intensity
correlation can be induced by interaction of modes com-
peting for the energy pumped into the system.
We, consequently, compute the distribution of the c4

values of all sets of four different resonances occurring at
the same position x in the same spectrum, that we call the
self-overlapping intensity resonances (SOIR), and of all
sets of four intensity peaks of modes at different wave-
length and at different x in the same spectrum, i.e., the
nonoverlapping intensity resonances (NOIR).
In Fig. 2 we display the distributions of the SOIR

correlation functions c4 (top), of the NOIR c4 (mid) and
of the BG c4 (bottom). According to Eq. (3), sets of SOIR
might be induced by nonlinearly interacting modes because
their space overlap is certainly nonzero. Sets of NOIR
might still be related to interacting modes in an extended
mode scenario where EkðrÞ ≠ 0 for r in a large portion of
space [51].
The largest values appear always on the SOIR sets.

Comparing the distributions in Fig. 2 as the number of
acquired emissions increases, the dominion of possible
values for the SOIR correlations extends its extremes in the
tails of the distribution, while the distributions of NOIR and
background c4 appear insensitive to the change in acquis-
ition time. Moreover, no difference can be appreciated
between distributions of c4 of NOIR and BG resonances
(cf. Fig. 2). Thus, even if extended modes could be present
in the sample, the present analysis cannot discriminate
weak long-range mode coupling with respect to noise.
In Fig. 3 we superimpose instances of the normalized

distributions for the background, the NOIR and the SOIR
correlations for an acquisition time of 100 ms, clearly
showing that the tails of the SOIR distribution extend well
beyond the 3σ of the other two. With extremely high
confidence, we can, finally, operatively identify nonlinearly
interacting sets of modes as those whose multimode
correlation is larger than the 3σ of the background
correlation distribution and we can conclude that spatially
overlapping modes interact nonlinearly in the random
lasing regime.
Do the interacting modes (SOIR with large c4)

also satisfy FMC (2)? To test it we introduce a “FMC
parameter”

Δ4 ≡ jω1 − ω2 þ ω3 − ω4j
γ1 þ γ2 þ γ3 þ γ4

ð5Þ

representing the frequency matching (un)satisfaction. The
smaller Δ4, the better the matching among angular frequen-
cies of four modes. To relate interaction and mode locking
we, then, look for a direct link between smallΔ4 values and
very large intensity correlations, in the tails of the SOIR
distribution Pðc4Þ.
In order to understand the relationship between mode

locking and couplings we analyze the behavior of the mean
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FIG. 1. (Color online) Phase diagram ξ2, ξ4 for b = 0 with static
(solid green) and dynamic (dashed green) x lines. In the 1RSB phase,
x lines with different value of x are shown both in the static and
dynamic cases: x = 0.45, 0.6, 0.8, and x = 1 top to bottom. The
x = 1 static x line is the static glassy RFOT line between the PLW
phase and the RL with 1RSB phase. The x = 1 dynamic x line is
where the dynamics arrests because of the exponential number of
metastable states characteristic of the RFOT. The solid black line
marks the end point of the x lines and a 1-FRSB appears. The dashed
black line is the analogous critical line of dynamic x lines. Both static
and dynamic 1-FRSB phases end on the solid magenta line. Here, the
complexity vanishes and a transition to a FRSB phase occurs. Finally,
the solid blue line marks the direct transition between the PLW and
the FRSB phases. The order parameters are continuous crossing this
line. The black square and black triangle symbols correspond to the
positions of the data shown in Fig. 5.

The analysis of the solutions can be done in two steps.
First, we discuss the solutions in presence of a fixed field
b = βh. Then, once the different phases have been identified,
we shall unfold b in terms of m using the unfolding equation
to recover the original RL problem. For this reason, the phase
diagrams will be reported in the (ξ2,ξ4,b), (ξ2,ξ4,b2,b4), and
(P,α,α0,RJ ) spaces, as appropriate. The relation among the
different spaces is given in Eqs. (35) and the unfolding equation
(61).

B. Phase diagram at fixed field

To study the transition to the RL state we consider first
the case of zero external field h. The complete phase diagram
for b = 0, including phases with RSB structure more complex
than RS or 1RSB, is shown in Figs. 1 and 2. In particular, the
IW is the only phase at high enough temperature. Lowering
the temperature, for ξ4 > 0, the IW becomes metastable as
the PLW phase appears continuously. The case of ξ4 = 0 is
different: increasing ξ2 the IW phase becomes unstable and a
transition occurs to replica symmetric RL phase.

For r=ξ2/ξ4<0.517, i.e., α > αnl ! (3 − 1.76382ε)
(3 − 1.03703ε2)−1, increasing ξ4 the PLW regime undergoes
a random first-order transition (RFOT) [42] to a glassy RL
phase with 1RSB: a jump is present in the order parameters
Q and R but the internal energy remains continuous. Thus, no
latent heat is exchanged.

FIG. 2. (Color online) Phase diagrams for b = 0 in the photonic
parameters, pumping rate P , and degree of openness α, for RJ =
βJ0 = 1.

For r = ξ2/ξ4 > 0.517 the PLW becomes unstable at a
critical temperature where the transition occurs to a RL regime
with FRSB, of the kind reported in Ref. [37].

The complete phase diagram at nonzero external field is
shown in Fig. 3, see also Fig. 4. In this case, it is useful to
introduce the ratio t = q0/q1 ∈ [0,1]. The 1RSB solutions can
be found fixing the parameters r, x, t and using the stationary
point equations to find the value of ξ4, b, y, and a. Two surfaces
are of particular interest: the surface x = 1, corresponding to
the RFOT between the RS and 1RSB solutions (Fig. 3: green
surface), and the surface t = 1 ↔ q0 = q1 corresponding to
the continuous transition between the RS and RSB phases
(Fig. 3: red surface).

A condition for the existence of the 1RSB solution can be
derived considering the stationarity equations for t close to 1.

FIG. 3. (Color online) Phase diagram of the 2 + 4 complex
spherical model at fixed external field in the (ξ2,ξ4,b) space. Only
the static solution is shown. The green surface, given by the 1RSB
solution with x = 1, is the critical RFOT surface between the RS
and 1RSB phases. The red surface, given by the 1RSB solution with
t = 1 → q1 = q0, gives critical surface of the continuous transition
between the RS and 1RSB phases. The black line marks the end line
of the the 1RSB solution. The blue surface is critical surface where
the (continuous) transition between the RS to FRSB phases occurs.
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(Inset) Specific heat scaled by N↵/⌫eff as a function of ⌧N1/⌫eff , with ↵ = 0.48(5),
⌫eff = 2� + �= 0.91(8).

5 The glass transition

The mean-field paradigm used to describe the thermodynamics of the glass transition
is the random first order transition (RFOT), which is a mixed-order ergodicity breaking
transition [65–68]. The ML 4-phasor model displays the features of a RFOT. The second order
nature of the transition is exhibited by the specific heat anomaly studied in the previous sec-
tion. In this section we aim to complete the study of the glass transition of the ML 4-phasor
model, by focusing on its first order nature, which is represented by the discontinuity of the
order parameter.

The order parameter for the glass transition is the overlap probability distribution P(q) [42].
In models with continuous variables, the P(q) is expected to be a distribution with a single
peak in q = 0 in the high temperature phase and to develop side peaks, as well, in the low
temperature glass phase. At finite N , of course, exact Dirac delta peaks in the P(q) appear as
a smoothen function of q due to strong finite-size effects.

Overlaps are defined as scalar products among phasor configurations of independent repli-
cas of the system with the same quenched disorder. In the present case the relevant overlap
for the transition turns out to be [34,49,69]

q↵� =
1
N

Re
NX

i=1

a↵k a�k =
1
N

NX

i=1

A↵kA�k cos(�↵k ��
�
k ) , (42)

where ↵ and � are replica indexes. Since replica overlaps measure the similarity between
glassy states of the system, their distribution gives information about the structure of the phase
space.

The protocol used in numerical simulations to measure the overlaps corresponds to the def-
inition of replicas as independent copies of the system with the same quenched disorder. For
each sample, i.e., each realization of disorder, we run dynamics independently for Nrep replicas
of the system, starting from randomly chosen initial phasor configurations. In this way, repli-
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Figure 8: Specific heat cVN
, (39), for the ML 4-phasor model with periodic boundary

conditions on the frequencies as a function of T . Different curves represent different
simulated sizes of the system. The simulated sizes are N = 18, 28, 42, 54, 66,104.
(Inset) Specific heat scaled by N↵/⌫eff as a function of ⌧N1/⌫eff , with ↵ = 0.27(5),
⌫eff = 2� + �= 1.2(2).

cas explore different regions of the same phase space and may thermalize in configurations
belonging to apart states. To study the behavior of the PJ (q)we choose Nrep = 4, so that at any
measurement time six values of the overlap are available q↵� = {q01, q02, q03, q12, q13, q23}. In
order to accumulate statistics, we measure the value of q↵� using N equilibrium, time uncor-
related, configurations of replicas at the same iteration of the simulated dynamics. Hence, for
each disordered sample the PJ (q) histograms are built with N ⇥Nrep(Nrep�1)/2 values of the
overlap. The number of configurations N actually used from our data can be evinced from
tables 2-3 in appendix A, in which the last half of the simulated Monte Carlo steps are surely
thermalized and the correlation time was estimated to be 28 Monte Carlo steps. Eventually,
for each realization of the quenched random couplings we have N = 210� 212, depending on
the size.

The overlap distribution functions PJ (q) are computed as the normalized histograms of
the overlaps for each one of the samples. This has been done for each simulated size of the
ML 4-phasor model with both FBC and PBC. In Fig. 9 we present the overlap distributions for
five samples at the temperature T = 0.25 ' 0.45Tc of the size N = 54 of the ML 4-phasor
model with PBC, together with the overlap distribution averaged over 100 samples. Given the
fluctuations of PJ (q) among the different samples, it is clear that the only physical quantity to
be considered in order to assess the glass transition is the averaged P(q)⌘ PJ (q).

This is particularly important in the case of the overlap distribution function, since, con-
trarily to the other thermodynamic observables, it is not a self-averaging quantity [42], i.e.,
the average P(q) cannot be reached simply by increasing the size of the system over which a
single sample PJ (q) is built, but only by averaging over disorder. In Fig. 10 and Fig. 11 the
average overlap distribution function of the ML 4-phasor model with FBC and PBC are, re-
spectively, reported for the whole simulated temperature range in a system with N = 62 spins.
The reduction of the finite-size effects obtained by using periodic boundary conditions in the
choice of interacting modes leads to display P(q) with more distinct secondary peaks in the
case of the ML 4-phasor model with PBC.

18

Periodic boundary conditions on frequencies Free boundary conditions on frequencies 

SciPost Phys. 14, 144 (2023)

the previous expression. Eventually, the critical exponent for the scaling of the specific heat
width in a generic mean-field theory must take value in the interval

1 ⌫eff  2 . (34)

Given the specific theory �n and its upper critical dimension duc(n), the critical mean-field
exponent ⌫ is equal to ⌫= ⌫eff/duc(n).

In the model under consideration, though, we have a dense (though not fully connected)
interaction network and we do not have a reference d-dimensional lattice underneath, such
that a scaling relation of the number of modes to a characteristic length can be set, as, for
instance N = Ld in a d-dimensional hypercubic lattice. Our analysis will, therefore, be limited
to the estimate of the exponents ↵, � and �.

It is also worth noting that the previous argument is exact only in the large-N limit, where
the saddle-point approximation holds. It is therefore likely that numerical simulations at fi-
nite N display finite-size effects which deviate from the above estimate. In particular for dense
models as the one we are studying it is difficult to access higher values of N because the num-
ber of interacting quadruplets increases as N3 and the computational cost of the simulations
is the one of a Non-deterministic Polynomial Complete problem. For help decreasing the finite
size effects we have exploited the alternative strategy discussed in Sec. 3, whose results are
presented in the following subsection.

4.2 Finite-size scaling analysis: numerical results

We perform a finite-size scaling study of the specific heat obtained from our numerical simu-
lations, in order to determine the value of the critical exponents ↵ and ⌫eff. Let us define the
absolute value of the reduced temperature t = |T/Tc �1|. In general, the basic assumption of
the FSS Ansatz [61,62] is that the finite-size behaviour of an observable YN in a d-dimensional
system of size (volume) N is governed by the ratio between the correlation length ⇠1 of the
infinite system and the size N . In the thermodynamic limit near the critical point the observ-
able Y scales like

Y1(T )⇡ At� .

The correlation length ⇠1 scales like

⇠1(T )⇡ ⇠0 t�⌫ . (35)

The scaling hypothesis can, then, be written as

YN (T ) = N
!
d fY

✓
⇠d
1
N

◆
, (36)

where ! is the critical exponent for the scaling of the peak of the observable and fY is a
dimensionless function that depends on the observable Y . The function fY is such that in
the limit N ! 1 one recovers the scaling law Y1(T ) ⇡ At� , an hence, by using (35),
! = /⌫ [61]. Therefore combining Eqs. (35) and (36) the scaling relation becomes

YN (T ) = N
 
⌫d f̂Y

Ä
N

1
⌫d tN

ä
= N

 
⌫eff f̂Y

⇣
N

1
⌫eff tN

⌘
, (37)

where tN = |T/Tc(N)�1|, Tc(N) is the finite-size critical temperature and f̂Y is another scaling
function. In the case of the specific heat, the previous finite-size scaling law takes the following
form

cVN
(T ) = N

↵
⌫eff f̂CVN

⇣
N

1
⌫eff tN

⌘
, (38)
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Figure 3: Intensity spectrum Ik Eq. (18) for a single realization of quenched disorder
of the ML 4-phasor model with periodic boundary conditions on the frequencies and
N = 104. The spectrum is normalized and the modes k are divided by N . Temper-
ature T 2 [0.35,1.1] (color map on the right hand vertical bar). Notice the loss of
the spectrum curvature, due to periodic boundary conditions on the FMC and the
persistence of the isolated peaks.

Moving to the more realistic random laser models, where the basic ingredient for mode-
locking, the frequency matching condition (1) is implemented, it is more difficult to understand
whether the universality class remains the same. In Ref. [39] an estimate of the value of the
critical exponent ⌫eff ⌘ 2� + � ' 2/3 was provided for the mode-locked random laser model.
This result is quite different from the value 2� + � = 2 which characterizes the REM model,
even if we consider its numerical finite-size scaling analysis.

As an instance, the REM specific heat behaviour for small sizes N = 16,20, 24,28 is re-
ported in Fig. 6. Details about the numerical technique used are given in App. B. Even though
the simulated N are not very large, from the interpolation of the cV (T ) peaks it turns out
that ⌫eff = 2� + � = 1.9 ± 0.2. Strong finite size effects are there, as one can observe from
the estimate of the ↵ exponent, displaying a value ↵ = 0.52± 0.07, rather different from the
mean-field exponent ↵ = 0. Because of preasymptotic effects, indeed, the scaling relation
2� + �+↵= 2 (independent from the system dimension) appears to be violated.

4.1 Mean-field exponent

The exponent value ⌫eff = 2� + �= 2 can be derived through a simple argument, which does
not require any specific knowledge of the model and can be easily generalized. Let us consider
a mean-field theory described by the Ginzburg-Landau potential

V (�) =
1
2
⌧�2 +

g
4!
�4 , (20)

where � represents the global order parameter of the transition and ⌧ is the reduced tempera-
ture ⌧= T/Tc�1. This is the standard paradigm of a second order phase transition, as a glass
transition is known to be, as far as the thermodynamic potential and its derivatives (including
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the previous expression. Eventually, the critical exponent for the scaling of the specific heat
width in a generic mean-field theory must take value in the interval

1 ⌫eff  2 . (34)

Given the specific theory �n and its upper critical dimension duc(n), the critical mean-field
exponent ⌫ is equal to ⌫= ⌫eff/duc(n).

In the model under consideration, though, we have a dense (though not fully connected)
interaction network and we do not have a reference d-dimensional lattice underneath, such
that a scaling relation of the number of modes to a characteristic length can be set, as, for
instance N = Ld in a d-dimensional hypercubic lattice. Our analysis will, therefore, be limited
to the estimate of the exponents ↵, � and �.

It is also worth noting that the previous argument is exact only in the large-N limit, where
the saddle-point approximation holds. It is therefore likely that numerical simulations at fi-
nite N display finite-size effects which deviate from the above estimate. In particular for dense
models as the one we are studying it is difficult to access higher values of N because the num-
ber of interacting quadruplets increases as N3 and the computational cost of the simulations
is the one of a Non-deterministic Polynomial Complete problem. For help decreasing the finite
size effects we have exploited the alternative strategy discussed in Sec. 3, whose results are
presented in the following subsection.

4.2 Finite-size scaling analysis: numerical results

We perform a finite-size scaling study of the specific heat obtained from our numerical simu-
lations, in order to determine the value of the critical exponents ↵ and ⌫eff. Let us define the
absolute value of the reduced temperature t = |T/Tc �1|. In general, the basic assumption of
the FSS Ansatz [61,62] is that the finite-size behaviour of an observable YN in a d-dimensional
system of size (volume) N is governed by the ratio between the correlation length ⇠1 of the
infinite system and the size N . In the thermodynamic limit near the critical point the observ-
able Y scales like

Y1(T )⇡ At� .

The correlation length ⇠1 scales like

⇠1(T )⇡ ⇠0 t�⌫ . (35)

The scaling hypothesis can, then, be written as

YN (T ) = N
!
d fY

✓
⇠d
1
N

◆
, (36)

where ! is the critical exponent for the scaling of the peak of the observable and fY is a
dimensionless function that depends on the observable Y . The function fY is such that in
the limit N ! 1 one recovers the scaling law Y1(T ) ⇡ At� , an hence, by using (35),
! = /⌫ [61]. Therefore combining Eqs. (35) and (36) the scaling relation becomes
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where tN = |T/Tc(N)�1|, Tc(N) is the finite-size critical temperature and f̂Y is another scaling
function. In the case of the specific heat, the previous finite-size scaling law takes the following
form

cVN
(T ) = N

↵
⌫eff f̂CVN

⇣
N

1
⌫eff tN

⌘
, (38)

15

for a mean-field model

SciPost Phys. 14, 144 (2023)

where ↵ denotes the critical exponent of the specific heat peak divergence. Since the dimen-
sionless function f̂ is scaling invariant, if one uses the correct values of the exponents ↵ and
⌫eff, the curves cVN

(T )/N↵/⌫eff for different values of N should collapse on the same curve.
In order to get the two exponents ↵ and ⌫eff from our numerical data we follow the scaling

method of Refs. [63, 64], whose details are reported in App. C. For each size N the specific
heat is measured by calculating the equilibrium energy fluctuations at each temperature T and
then averaging over disorder instances

cVN
=

1
N
hE2i � hEi2

T2
, (39)

where h. . . i represents the thermal average and [. . . ] represents the average over disorder,
see App. C.

For the systems with FBC, the specific heat behaviour as a function of temperature is shown
in the main panel of Fig. 7 for different sizes. By a quadratic fit of the peaks of the specific heat
(at Tc(N)), the critical temperature is estimated to be Tc = 0.86(3) in the thermodynamic limit,
as interpolated in Appendix C. In the inset of Fig. 7 data are collapsed using the exponents ↵
and ⌫eff obtained from the FFS analysis reported in App. C:

FBC: ↵= 0.48± 0.05 , 1/⌫eff = 1.1± 0.1 . (40)

In order to perform the FSS analysis we have used the temperatures reported in Table 1.
With respect to the estimate 1/⌫eff ' 1.5 found in [39], a much larger statistics allows now

to find an estimate of 2� +� closer to the mean-field threshold and suggesting that deviations
from mean-field theory might be due to pre-asymptotic effects in N . The confirmation that
this is, indeed, the origin of the anomalous value previously found for 2� + � comes from the
analysis with frequency PBC, devised to partially circumvent finite size corrections.

The specific heat for systems whose frequencies obeys PBC are displayed in Fig. 8. In the
main panel we show the raw data. Analyzing the scaling of the peak the critical temperature
Tc = 0.61(3) has been determined. In the inset of Fig. 8 we show the collapsed data with the
values of exponents derived with the FSS method reported in App. C

PBC: ↵= 0.27± 0.05 , 1/⌫eff = 0.86± 0.14 . (41)

With PBC we find an estimate inside the interval (34) for a mean-field universality class. There-
fore, up to the limits of our analysis, despite being possibly still of a different universality class
with respect to the REM, for which 2� + �= 2, we observe that the glass transition of the ML
4-phasor model is compatible with a mean-field transition.

Table 1: Values of the critical temperatures for the ML 4-phasor model with fixed and
periodic boundary conditions.

FBC PBC
N4 N Tc �Tc N Tc �Tc
28 18 0.55 0.04 - - -
29 - - - 18 0.42 0.02
211 32 0.63 0.025 28 0.49 0.02
213 48 0.69 0.02 42 0.52 0.02
214 62 0.75 0.03 54 0.55 0.03
215 - - - 66 0.56 0.04
216 96 0.8 0.07 82 0.56 0.05
217 120 0.83 0.09 - - -
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Table 4: Details for the simulations of the ML 4-phasor model with PBC.

N Tc �Tc Ns
16 0.85 0.02 300
20 0.83 0.02 200
24 0.81 0.02 200
28 0.80 0.02 100

and compute the maximum point of each fitting function as Tc(N) = �bN/(2cN ), estimat-
ing the statistical error accordingly. The critical temperature Tc(1) of the model can be
extrapolated from the fit of the finite-size critical temperatures with the following function:
Tc(N) = Tc(1) + aN�b, where the exponent b gives a first rough estimate of the critical
exponent 1/⌫eff. The results of the fit are:

FBC: Tc(1) = 0.86± 0.03 , b = 1.6± 0.5 , (C.1)

PBC: Tc(1) = 0.61± 0.03 , b = 0.98± 0.3 . (C.2)

We then take the following Ansatz on the form of scaling function f̂ in Eq. (38)

f̂ (x) = A+ C x2 , (C.3)

where x = N1/⌫eff tN , with tN computed by using the Tc(N) reported in Table 1. In the previous
Ansatz we have not included the linear term, since the points are translated in order for the
peak of each curve to be in the origin and we expect the linear term not to matter. With this
Ansatz the scaling hypothesis for the specific heat Eq. (38) reads as

cVN
(T ) = ÃN + C̃N t2

N , (C.4)

where X̃N = XN N
↵+m
⌫eff , with XN = {AN , CN} and m = {0,2}. We fit the points of the curves

around the critical temperature with the previous function and determine the values of the
coefficients. We, then, notice that the behaviour of the logarithm of the coefficients,

ln ÃN = ln AN +
↵

⌫eff
ln N ,

ln |C̃N |= ln |CN |+
↵+ 2
⌫eff

ln N ,

is linear in ln N and the estimates of ↵ and ⌫eff can be obtained by linear interpolation.
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where ↵ denotes the critical exponent of the specific heat peak divergence. Since the dimen-
sionless function f̂ is scaling invariant, if one uses the correct values of the exponents ↵ and
⌫eff, the curves cVN

(T )/N↵/⌫eff for different values of N should collapse on the same curve.
In order to get the two exponents ↵ and ⌫eff from our numerical data we follow the scaling

method of Refs. [63, 64], whose details are reported in App. C. For each size N the specific
heat is measured by calculating the equilibrium energy fluctuations at each temperature T and
then averaging over disorder instances

cVN
=

1
N
hE2i � hEi2

T2
, (39)

where h. . . i represents the thermal average and [. . . ] represents the average over disorder,
see App. C.

For the systems with FBC, the specific heat behaviour as a function of temperature is shown
in the main panel of Fig. 7 for different sizes. By a quadratic fit of the peaks of the specific heat
(at Tc(N)), the critical temperature is estimated to be Tc = 0.86(3) in the thermodynamic limit,
as interpolated in Appendix C. In the inset of Fig. 7 data are collapsed using the exponents ↵
and ⌫eff obtained from the FFS analysis reported in App. C:

FBC: ↵= 0.48± 0.05 , 1/⌫eff = 1.1± 0.1 . (40)

In order to perform the FSS analysis we have used the temperatures reported in Table 1.
With respect to the estimate 1/⌫eff ' 1.5 found in [39], a much larger statistics allows now

to find an estimate of 2� +� closer to the mean-field threshold and suggesting that deviations
from mean-field theory might be due to pre-asymptotic effects in N . The confirmation that
this is, indeed, the origin of the anomalous value previously found for 2� + � comes from the
analysis with frequency PBC, devised to partially circumvent finite size corrections.

The specific heat for systems whose frequencies obeys PBC are displayed in Fig. 8. In the
main panel we show the raw data. Analyzing the scaling of the peak the critical temperature
Tc = 0.61(3) has been determined. In the inset of Fig. 8 we show the collapsed data with the
values of exponents derived with the FSS method reported in App. C

PBC: ↵= 0.27± 0.05 , 1/⌫eff = 0.86± 0.14 . (41)

With PBC we find an estimate inside the interval (34) for a mean-field universality class. There-
fore, up to the limits of our analysis, despite being possibly still of a different universality class
with respect to the REM, for which 2� + �= 2, we observe that the glass transition of the ML
4-phasor model is compatible with a mean-field transition.

Table 1: Values of the critical temperatures for the ML 4-phasor model with fixed and
periodic boundary conditions.
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PBC: ↵= 0.27± 0.05 , 1/⌫eff = 0.86± 0.14 . (41)

With PBC we find an estimate inside the interval (34) for a mean-field universality class. There-
fore, up to the limits of our analysis, despite being possibly still of a different universality class
with respect to the REM, for which 2� + �= 2, we observe that the glass transition of the ML
4-phasor model is compatible with a mean-field transition.

Table 1: Values of the critical temperatures for the ML 4-phasor model with fixed and
periodic boundary conditions.

FBC PBC
N4 N Tc �Tc N Tc �Tc
28 18 0.55 0.04 - - -
29 - - - 18 0.42 0.02
211 32 0.63 0.025 28 0.49 0.02
213 48 0.69 0.02 42 0.52 0.02
214 62 0.75 0.03 54 0.55 0.03
215 - - - 66 0.56 0.04
216 96 0.8 0.07 82 0.56 0.05
217 120 0.83 0.09 - - -
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