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High-dimensional random landscapes

A random landscape  is a random function of a large number  of 
degrees of freedom  

This is an important topic in physics, mathematics and beyond: 

Spin-glass energy landscape 

Utility function in economics 

Cost function in machine learning 

An ubiquitous problem is then to search for the exact (or at least approximate) 
global minimum or ground state energy of the energy landscape : 

ℋ(x) N
x = {x1, ⋯, xN}

ℋ(x)

3

emin =
1
N

min
x

ℋ(x)

(See e.g. Ros, Fyodorov ’22)



Ground-state energy

The intensive ground-state energy (GSE) is self-averaging: 

Typical fluctuations extend over a vanishing scale and are described by 

Deriving the limiting distribution is clearly a problem of extreme value statistics 
for a strongly correlated random process 
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lim
N→∞

emin = lim
N→∞

emin = etyp

lim
N→∞

Prob [emin ≥ etyp + eN + aN x] = 𝒫(−x)
lim

N→∞
eN = 0

lim
N→∞

aN = 0

lim
x→−∞

𝒫(x) = 0

lim
x→+∞

𝒫(x) = 1

(At least for mean-field models)



EVS for independent identically distributed 
(iid) random variables

This problem is fully characterised for iid random variables: 
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Pjoint(x1, ⋯, xN) =
N

∏
i=1

p(xi)

lim
x→−∞

𝒫(x) = 0

lim
x→+∞

𝒫(x) = 1

lim
N→∞

Prob [xmin ≥ xN + aN x] = lim
N→∞ [∫

∞

xN+aN x
p(u) du]

N

= 𝒫i.i.d.(−x)

The coefficients  and  
Depend explicitly on the  
parent distribution 

xN aN

p(x)



EVS for independent identically distributed 
(iid) random variables

The distribution of typical fluctuations is universal and falls in one of three 
universality classes (Fisher–Tippett–Gnedenko theorem) 

  

6

Gumbel 
Exponential or faster decay 

𝒫I(x) = exp(−e−x)

Fréchet 
Power-law decay 

𝒫II,α(x) = exp(−x−α)Θ(x)

Weibull 
Finite edge 

𝒫III,β(x) = exp(−xβ)Θ(−x) + Θ(x)

Much more difficult for strongly 

correlated random variables!  

Universal limiting distributions are expected as well 

but a full characterisation is far from complete!
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General Spherical spin-glass model

The general spherical spin-glass model is defined as the Gaussian process 

The simplest model consists in the -spin model, where p

8

ℋ(x1)ℋ(x2) = N f ( x1 ⋅ x2

N )
N

∑
i=1

x2
i = Nℋ(x) = 0

f (q) =
∞

∑
r=2

gr qr+Γq = g(q)+Γq ∀r ≥ 2, gr ≥ 0

ℋ(x) = −
1
p

N

∑
i1,⋯,ip=1

Ji1,⋯,ip

p

∏
j=1

xij−
N

∑
i=1

hixi f (q) =
J2

p
qp+Γq

gr =
J2

p
δr,pRandom 

p-body  
interaction

Random 
magnetic 

field



General Spherical spin-glass model

The general spherical spin-glass model is defined as the Gaussian process 

The energy landscape of this model is: 

 A model for the cost function of machine learning algorithms (Choramanska ’15)  

 A versatile model of constrained optimisation 

 A prototypical model of strongly correlated stochastic process  
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ℋ(x1)ℋ(x2) = N f ( x1 ⋅ x2

N )
N

∑
i=1

x2
i = Nℋ(x) = 0

∀r ≥ 2, gr ≥ 0f (q) =
∞

∑
r=2

gr qr+Γq = g(q)+Γq



General Spherical spin-glass model

The general spherical spin-glass model is defined as the Gaussian process 

Characterising the typical value and fluctuations of the GSE  is thus natural  emin

emin =
1
N

min
x:x2=N

ℋ(x)
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ℋ(x1)ℋ(x2) = N f ( x1 ⋅ x2

N )
N

∑
i=1

x2
i = Nℋ(x) = 0

∀r ≥ 2, gr ≥ 0f (q) =
∞

∑
r=2

gr qr+Γq = g(q)+Γq



General Spherical spin-glass model

The general spherical spin-glass model is defined as the Gaussian process 

Its typical ground-state energy can be computed using the replica method
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ℋ(x1)ℋ(x2) = N f ( x1 ⋅ x2

N )
N

∑
i=1

x2
i = Nℋ(x) = 0

∀r ≥ 2, gr ≥ 0

lim
N→∞

1
N

ln Zn = ϕn = max
Q>0

Φn(Q) Φn(Q) =
β2

2

n

∑
a,b=1

f (Qab) +
1
2

ln det Q +
n
2 (1 + ln 2π)

etyp = emin = − lim
β→∞

lim
n→0

ϕn

nβ

f (q) =
∞

∑
r=2

gr qr+Γq = g(q)+Γq



General Spherical spin-glass model

The general spherical spin-glass model is defined as the Gaussian process 

It yields the Crisanti-Sommers formula (Crisanti & Sommers ‘92)
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ℋ(x1)ℋ(x2) = N f ( x1 ⋅ x2

N )
N

∑
i=1

x2
i = Nℋ(x) = 0

∀r ≥ 2, gr ≥ 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

f (q) =
∞

∑
r=2

gr qr+Γq = g(q)+Γq

Ψ [z(q); v, q0] =
1
2

v f′ (1) + ∫
1

q0

dq z(q) f′ (q) +
q0

v + ∫
1

q0

dq z(q)
+ ∫

1

q0

dq

v + ∫
1

q
dr z(r)



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92) 

The explicit form of  depends on the covariance function  :z(q) f (q) = g(q) + Γq
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 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0] Ψ [z(q); v, q0] =
1
2

v f′ (1) + ∫
1

q0

dq z(q) f′ (q) +
q0

v + ∫
1

q0

dq z(q)
+ ∫

1

q0

dq

v + ∫
1

q
dr z(r)



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92) 

The explicit form of  depends on the covariance function  : 

 For  the solution is RS:  and/or 

z(q) f (q) = g(q) + Γq

Γ > ΓRSB = g′ ′ (1) − g′ (1) q0 = 1 z(q) = 0

14

etyp = emin = −
1
2

min
v≥0 [v f′ (1) +

1
v ] = − g′ (1) + Γ

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92) 

The explicit form of  depends on the covariance function  : 

 For  the solution is RS:  and/or 

z(q) f (q) = g(q) + Γq

Γ > ΓRSB = g′ ′ (1) − g′ (1) q0 = 1 z(q) = 0
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etyp = emin = −
1
2

min
v≥0 [v f′ (1) +

1
v ] = − g′ (1) + Γ

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]

For the 2-spin  one has  

The typical GSE is always RS 
 

g(q) =
J2

2
q2 ΓRSB = 0

etyp = − J2 + Γ



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92) 

The explicit form of  depends on the covariance function  : 

 For  the solution is RS:  and/or  

The energy landscape  is “topologically trivial” for this type of models:  

   it displays a sub-exponential number of local minima

z(q) f (q) = g(q) + Γq

Γ > ΓRSB = g′ ′ (1) − g′ (1) q0 = 1 z(q) = 0

ℋ(x)

16

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92) 

The explicit form of  depends on the covariance function  : 

 For  the solution is RSB 

The energy landscape  is “topologically complex” for this type of models:  

   it displays an exponential number of local minima

z(q) f (q) = g(q) + Γq

Γ < ΓRSB

ℋ(x)
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 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92) 

The explicit form of  depends on the covariance function  : 

 For  the solution is RSB 

Its number of RSB depends on the sign of the Schwarzian derivative

z(q) f (q) = g(q) + Γq

Γ < ΓRSB

18

𝒮[g′ (q)] =
g(4)(q)
g′ ′ (q)

−
3
2 ( g(3)(q)

g′ ′ (q) )
2

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92) 

The explicit form of  depends on the covariance function  : 

 For  the solution is RSB 

If  one has  the solution is 1RSB

z(q) f (q) = g(q) + Γq

Γ < ΓRSB

∀q ∈ [0,1] 𝒮[g′ (q)] < 0

19

z(q) = {0 , q < q0

m0 > 0 , q > q0

The -spin is 1RSBp > 2

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92) 

The explicit form of  depends on the covariance function  : 

 For  the solution is RSB 

If  one has  the solution is 1RSB

z(q) f (q) = g(q) + Γq

Γ < ΓRSB

∀q ∈ [0,1] 𝒮[g′ (q)] < 0
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 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]

The exponentially many local minima of 
 the random energy landscape are isolated, 

separated by high barriers

Only local minima are found in a  
small range of energy around emin



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92) 

The explicit form of  depends on the covariance function  : 

 For  the solution is RSB 

If  one has  the solution is FRSB

z(q) f (q) = g(q) + Γq

Γ < ΓRSB

∀q ∈ [0,1] 𝒮[g′ (q)] > 0

21

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]

z(q) =
0 , q < q0

g(3)(q)
2g′ ′ (q)3/2 ≥ 0 , q > q0



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92) 

The explicit form of  depends on the covariance function  : 

 For  the solution is RSB 

If  one has  the solution is FRSB

z(q) f (q) = g(q) + Γq

Γ < ΓRSB

∀q ∈ [0,1] 𝒮[g′ (q)] > 0

22

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]

There are many flat directions  
of the landscape  

All types of saddles are found in a  
small range of energy around emin



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92) 

The explicit form of  depends on the covariance function  : 

 For  the solution is RSB 

If  one has  the solution is FRSB

z(q) f (q) = g(q) + Γq

Γ < ΓRSB

∀q ∈ [0,1] 𝒮[g′ (q)] > 0
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 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]

etyp = − qtyp g′ ′ (qtyp) + ∫
1

qtyp

dq g′ ′ (q) Γ = qtypg′ ′ (qtyp) − g′ (qtyp) As ,  
 and the RS solution is recovered 

Γ → ΓRSB = g′ ′ (1) − g′ (1) qtyp → 1
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Spherical 2-spin model

For the spherical 2-spin model 

Constrained optimisation problem: 

Studied in detail in computer science (Conn et al. ’00, Tisseur & Meerberger ’01, …)

25

 JijJkl =
J2

N
(δijδjl + δilδjk)

hihj = Γδij

 Jij = 0
hi = 0

N

∑
i=1

x2
i = N

Random 
2-body  

interaction

Random 
magnetic 

field

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

emin=
1
N

min
x:x2=N

ℋ(x)



Spherical 2-spin model

For the spherical 2-spin model 

In absence of magnetic field  : 

Distribution of the ground-state energy (GSE): 

Γ = 0

PN(e) = δ (e − emin)

26

N

∑
i=1

x2
i = N

: Lowest eigenvalue of GOE matrix λminemin=
λmin

2
etyp = − J

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi



Spherical 2-spin model

For the spherical 2-spin model 

In absence of magnetic field  : 

Three non-trivial regimes of fluctuations  

Γ = 0

27

N

∑
i=1

x2
i = N

2N2/3ℱ1 (−2N2/3(e − etyp))
e−Nℒ(e)

Typical fluctuations N2/3 |e − etyp | = O(1)

Left atypical fluctuations e < etyp

Right atypical fluctuations e > etype−N2ℛ(e)

: Lowest eigenvalue of GOE matrix λminemin=
λmin

2
etyp = − J

 : Tracy-Widom GOE distribution ℱ1 (x)

Tracy & Widom ‘96

Dean, Majumdar ’06 

Ben Arous, Dembo & Guionnet ’01 
Majumdar & Vergassola ’09 

GOE: Gaussian Orthogonal Ensemble 

PN(e) ≈

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi



Matching of the tails

One can show explicitly a matching between the tails of the TW and the behaviours of 
the large deviation functions (LDFs) 

28

Typical fluctuations: Tracy-Widom 

−ln ℱ1(−x) =

2
3

|x |3/2 , x → − ∞

|x |3

24
, x → + ∞

Atypical fluctuations: LDFs 

,  

, 

Nℒ(e) ≈
2N
3 (−2(e + J ))3/2 e → − J−

N2ℛ(e) ≈
N2

24 (2(e + J ))3 e → − J+

x = 2N2/3(e + J )



Spherical 2-spin model

For the spherical 2-spin model 

For positive magnetic field  : 

The ground-state energy satisfies a central limit theorem (Chen & Sen ‘17) 

Gaussian typical fluctuations

Γ > 0

29

N

∑
i=1

x2
i = N

lim
N→∞

N Var(emin) = 𝒱min =
Γ
2

etyp = emin = − lim
β→∞

lim
n→0

ϕn

nβ
= − J2 + Γ

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

hihj = Γδij



Spherical 2-spin model

For the spherical 2-spin model 

The atypical fluctuations are described by a large deviation function (LDF) 

30

N

∑
i=1

x2
i = N

ℒ(e) = − lim
N→∞

1
N

ln PN(e)

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

hihj = Γδij



Spherical 2-spin model

For the spherical 2-spin model 

The atypical fluctuations are described by a large deviation function (LDF) 

Its Legendre transform is the scaled cumulant generating function (CGF) and can be 
computed using replica computations  

31

N

∑
i=1

x2
i = N

ℒ(e) = − lim
N→∞

1
N

ln PN(e)

ϕ(s) = − min
e

[se + ℒ(e)] = lim
β→∞

ϕs/βlim
β→∞

1
N

ln Zs/β =
1
N

ln e−Nsemin =
1
N

ln∫ de e−N[se + ℒ(e)]

emin = − lim
β→∞

1
Nβ

ln Z

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

hihj = Γδij

 

Overlap matrix

Qab =
xa ⋅ xb

Nlim
N→∞

1
N

ln Zn = ϕn



Spherical 2-spin model

For the spherical 2-spin model 

The CGF and the LDF were first computed using a RS ansatz 

Its expression extends for  e < ec,RS

32

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

N

∑
i=1

x2
i = N

hihj = Γδij

RS: Fyodorov & Le Doussal ’14



Spherical 2-spin model

For the spherical 2-spin model 

Using a rigorous approach the CGF and the LDF were shown to display two branches: 
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 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

N

∑
i=1

x2
i = N

The transition is of third order 
, ℒRS(e) − ℒRSB(e) ∝ (e − eRSB)3 e → eRSB

hihj = Γδij

ℒ(e) = − lim
N→∞

1
N

ln PN(e) =

ℒRS(e) , e < eDZ

ℒDZ(e) , ec > e > eDZ ,

+∞ , e > ec

RS: Fyodorov & Le Doussal ’14 
Rigorous: Dembo & Zeitouni ’15

The real extent of the  
RS solution is e < eRSB ≤ ec,RS



Spherical 2-spin model

For the spherical 2-spin model 

We showed that the mechanism behind these two branches is RSB 
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 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

N

∑
i=1

x2
i = N

ℒ(e) = − lim
N→∞

1
N

ln PN(e) =

ℒRS(e) , e < eRSB

ℒRSB(e) , ec > e > eRSB ,

+∞ , e > ec

hihj = Γδij

RS: Fyodorov & Le Doussal ’14 
Rigorous: Dembo & Zeitouni ’15

One eigenvalues of  

becomes positive for 

A(ab),(cd) =
δ2Φn=s/β(Q)
δQabδQcd

e > eRSB

 Mechanism:  
LACT, Fyodorov & Le Doussal ‘23



Spherical 2-spin model

For the spherical 2-spin model 

The CGF and the LDF each display two distinct branches: an RS and an RSB branch 

The LDF diverges beyond a finite  

critical energy ec = etyp(Γ = 0) = − J

35

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

N

∑
i=1

x2
i = N

ℒ(e) = − lim
N→∞

1
N

ln PN(e) =

ℒRS(e) , e < eRSB

ℒRSB(e) , ec > e > eRSB ,

+∞ , e > ec

ℒRSB(e) ≈ −
1
2

ln(ec − e) , e → ec

hihj = Γδij



Spherical 2-spin model

For the spherical 2-spin model 

The CGF and the LDF each display two distinct branches: an RS and an RSB branch 

The fluctuations for  are either  

described by a LDF with rate   

(Most probably ) or completely suppressed

e > ec

sN ≫ N

N2

36

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

N

∑
i=1

x2
i = N

ℒ(e) = − lim
N→∞

1
N

ln PN(e) =

ℒRS(e) , e < eRSB

ℒRSB(e) , ec > e > eRSB ,

+∞ , e > ec

hihj = Γδij



Spherical 2-spin model

For the spherical 2-spin model 

The CGF and the LDF each display two distinct branches: an RS and an RSB branch 

37

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

N

∑
i=1

x2
i = N

ℒ(e) = − lim
N→∞

1
N

ln PN(e) =

ℒRS(e) , e < eRSB

ℒRSB(e) , ec > e > eRSB ,

+∞ , e > ec

The RS branch of the LDF matches in the 
vicinity of  the Gaussian tail of the 
limiting PDF

etyp

, ℒRS(e) ≈
(e − etyp)

2

2𝒱min
e → etyp

hihj = Γδij



Spherical 2-spin model

For the spherical 2-spin model 

Taking the limit , only the RS branch appears Γ → 0

38

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

N

∑
i=1

x2
i = N

ℒ(e) = − lim
N→∞

1
N

ln PN(e) =
ℒRS(e) , e < eRSB = − J

+∞ , e > ec = − J

The rescaled variance vanishes  
The 3/2 tail of the TW is recovered

𝒱min → 0

, ℒRS(e) ≈
4 2

3
|e + J |3/2 e → etyp(Γ = 0) = ec = − J

hihj = Γδij



Spherical 2-spin model

For the spherical 2-spin model 

The LDF of the 2-spin are described by the following phase diagram 

39

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

N

∑
i=1

x2
i = N

hihj = Γδij

 
 

ec = − J
etyp(Γ) = − J + Γ2

eRSB(Γ) = − J (1 +
J2

2(J2 + Γ) )



Spherical 2-spin model

For the spherical 2-spin model 

The LDF of the 2-spin are described by the following phase diagram 

40

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

N

∑
i=1

x2
i = N

hihj = Γδij

 
 

ec = − J
etyp(Γ) = − J + Γ2

eRSB(Γ) = − J (1 +
J2

2(J2 + Γ) )
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Typical fluctuations of the GSE 

The distribution of the GSE  

PN(e) = δ (e − emin) ≈ aN𝒫 (aN(e − etyp − eN))

42

N → ∞



Typical fluctuations of the GSE 

The distribution of the GSE  

 

For , the GSE satisfies a central limit theorem and for models with FRSB

PN(e) = δ (e − emin) ≈ aN𝒫 (aN(e − etyp − eN))
Γ > 0

43

etyp = − qtyp g′ ′ (qtyp) + ∫
1

qtyp

dq g′ ′ (q)
Γ = qtypg′ ′ (qtyp) − g′ (qtyp)

lim
N→∞

N Var(emin) = 𝒱min = g(qtyp) +
Γ − g′ (qtyp)

2

(Chen & Sen ’17)

N → ∞



Typical fluctuations of the GSE 

The distribution of the GSE  

 

For  and the -spin model: 

 The typical fluctuations of the GSE are described by a Gumbel distribution

PN(e) = δ (e − emin) ≈ aN𝒫 (aN(e − etyp − eN))
Γ = 0 p > 2

44

lim
N→∞

Prob [emin ≥ etyp + eN + aN x] = 𝒢(−x)
eN ∼

1
2N

ln N

aN ∼
1
N 𝒢(x) = exp (−e−x)

(Subag & Zeitouni ’17)

N → ∞



Typical fluctuations of the GSE 

The distribution of the GSE  

 

No general result for  

There exists a general bound from the average density of minima of : 

   

The density of minima can be computed using Kac-Rice formula 

PN(e) = δ (e − emin) ≈ aN𝒫 (aN(e − etyp − eN))
Γ = 0

ℋ(x)

PN(e) = δ (e − emin) ≤ 𝒩min(e) = ∑
α:minima of ℋ(x)

δ(e − eα)

𝒩min(e) = ∫x2=N
dx δ (e −

ℋ(x)
N ) δ (∇ℋ(x)) det (∇2ℋ(x)) Θ(∇2ℋ(x))

45

(See e.g. Ros, Fyodorov ’22)

N → ∞



Atypical fluctuations of the GSE 

An alternative indirect method consists in analysing the atypical fluctuations 

They are characterised by the LDF: 

 

The behaviour of the LDF in the vicinity of  

 

Is expected to match the left tail of the PDF  

 

ℒ(e) = − lim
N→∞

1
N

ln PN(e)

etyp

Nℒ(e) ≈ Nβ |e − etyp |α , e → etyp

−ln 𝒫(aN x) = aα
N β |x |α , x → − ∞

aN ∼ N1/α

46

Question investigated for  
Sherrington-Kirkpatrick (SK) 

in a series of papers by 
Parisi & Rizzo ’08 ’09 ’10 



Atypical fluctuations of the GSE 

An alternative indirect method consists in analysing the atypical fluctuations 

They are characterised by the LDF: 

   ℒ(e) = − lim
N→∞

1
N

ln PN(e) ≤ −Σmin(e) = lim
N→∞

−
1
N

ln 𝒩min(e)

47

The LDF is bounded in terms of the annealed complexity of minima



Atypical fluctuations of the GSE 

The atypical fluctuations are characterised by the LDF: 

 

As for the 2-spin model, the scaled CGF can be computed using replica computations

ℒ(e) = − lim
N→∞

1
N

ln PN(e)

48

ϕ(s) = − min
e

[se+ℒ(e)] = lim
β→∞

ϕs/β emin = − lim
β→∞

1
Nβ

ln Z

lim
N→∞

1
N

ln Zn = ϕn = max
Q>0

Φn(Q) Φn(Q) =
β2

2

n

∑
a,b=1

f (Qab) +
1
2

ln det Q +
n
2 (1 + ln 2π)



Atypical fluctuations of the GSE 

The expression of the CGF takes a similar form as the Crisanti-Sommers formula 

49

ϕ(s) = − min
e

[se + ℒ(e)] = lim
β→∞

ϕs/β =

max
v≥0,0<q0<1,z(q)

Φ(s) , s > 0

0 , s = 0
min

v≥0,0<q0<1,z(q)
Φ(s) , s < 0

+
s
2 ∫

1

q0

dq

v + ∫
1

q
dr z(r)

.

Φ(s) =
s
2 [sf (q0) + vf′ (1) + ∫

1

q0

dq z(q) f′ (q)] +
1
2

ln (sq0 + v + ∫
1

q0

dq z(q)) − ln (v + ∫
1

q0

dq z(q))

(LACT, Fyodorov & Le Doussal ’23)

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = s



Atypical fluctuations of the GSE 

The expression of the CGF takes a similar form as the Crisanti-Sommers formula 

50

ϕ(s) = − min
e

[se + ℒ(e)] = lim
β→∞

ϕs/β =

max
v≥0,0<q0<1,z(q)

Φ(s) , s > 0

0 , s = 0
min

v≥0,0<q0<1,z(q)
Φ(s) , s < 0

(LACT, Fyodorov & Le Doussal ’23)

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = s

As for the 2-spin, the CGF may undergo RSB transitions  
The location of the transition depends on  s



Atypical fluctuations of the GSE 

The expression of the CGF takes a similar form as the Crisanti-Sommers formula 

51

(LACT, Fyodorov & Le Doussal ’23)

The typical GSE is recovered 
etyp = − ϕ′ (0) = − min

v≥0,0<q0<1,z(q)
Φ′ (0)

And the rescaled variance  
can be obtained 

lim
N→∞

N Var(emin) = 𝒱min

ϕ(s) = − min
e

[se + ℒ(e)] = lim
β→∞

ϕs/β =

max
v≥0,0<q0<1,z(q)

Φ(s) , s > 0

0 , s = 0
min

v≥0,0<q0<1,z(q)
Φ(s) , s < 0



Atypical fluctuations of the GSE 

The expression of the CGF takes a similar form as the Crisanti-Sommers formula 

52

(LACT, Fyodorov & Le Doussal ’23)

Taking the Legendre transform, one obtains the LDF 
ℒ(e) = − min

s
[se + ϕ(s)]

ϕ(s) = − min
e

[se + ℒ(e)] = lim
β→∞

ϕs/β =

max
v≥0,0<q0<1,z(q)

Φ(s) , s > 0

0 , s = 0
min

v≥0,0<q0<1,z(q)
Φ(s) , s < 0



Phase diagram for LDF

For a model with FRSB phase, one obtains for the LDF 

53
(LACT, Fyodorov & Le Doussal ’23)

𝒮[g′ (q)] =
g(4)(q)
g′ ′ (q)

−
3
2 ( g(3)(q)

g′ ′ (q) )
2

The criterion for the number of RSB is again Schwarzian derivative

If  one has  the model is FRSB∀q ∈ [0,1] 𝒮[g′ (q)] > 0

ℒ(e) = − min
s

[se + ϕ(s)]



Phase diagram for LDF (FRSB)

For a model with FRSB phase, one obtains for the LDF 

54
(LACT, Fyodorov & Le Doussal ’23)

For any , there is both an RS and FRSB branchΓ ≥ 0

One eigenvalues of  

becomes positive for 

A(ab),(cd) =
δ2Φn=s/β(Q)
δQabδQcd

e > eRSB

ℒ(e) = − min
s

[se + ϕ(s)]≤−Σmin(e) = −
1
N

ln 𝒩min(e)

Bound from complexity



Phase diagram for LDF (FRSB)

For a model with FRSB phase, one obtains for the LDF 

55
(LACT, Fyodorov & Le Doussal ’23)

ℒ(e) = − min
s

[se + ϕ(s)]≤−Σmin(e) = −
1
N

ln 𝒩min(e)

In the RS phase, the LDF saturates the bounds 

ℒRS(e) = − lim
N→∞

1
N

ln PN(e)=−Σmin(e) = −
1
N

ln 𝒩min(e)

Bound from complexity



Phase diagram for LDF (FRSB)

For a model with FRSB phase, one obtains for the LDF 

56
(LACT, Fyodorov & Le Doussal ’23)

ℒ(e) = − min
s

[se + ϕ(s)]



Phase diagram for LDF (FRSB)

For a model with FRSB phase, one obtains for the LDF 

57
(LACT, Fyodorov & Le Doussal ’23)

For , the LDF is quadratic around  
matching the Gaussian distribution
Γ > 0 etyp

,  ℒ(e) ≈
(e − etyp)

2

2𝒱min
e → etyp



Phase diagram for LDF (FRSB)

For a model with FRSB phase, one obtains for the LDF 
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(LACT, Fyodorov & Le Doussal ’23)



Phase diagram for LDF (FRSB)

For a model with FRSB phase, one obtains for the LDF 

59
(LACT, Fyodorov & Le Doussal ’23)

ℒ(e) = − min
s

[se + ϕ(s)]
For , the behaviour of the LDF depends 

on the covariance

Γ = 0

By matching, new family of PDF for extreme values statistics with universal tails!

g(q) ≈ g2q2 + grqr , q → 0

ℒ(e) = ξr |e − ec |ηr , e → etyp(Γ = 0) = ec

1 ≤ ηr =
3(r − 2)
2r − 3

≤
3
2



Phase diagram for LDF (FRSB)

For a model with FRSB phase, one obtains for the LDF 

60
(LACT, Fyodorov & Le Doussal ’23)

ℒ(e) = − min
s

[se + ϕ(s)]
For , the behaviour of the LDF depends 

on the covariance

Γ = 0

g(q) ≈ g2q2 + grqr , q → 0

ℒ(e) = ξr |e − ec |ηr , e → etyp(Γ = 0) = ec

1 ≤ ηr =
3(r − 2)
2r − 3

≤
3
2

For ,  
exponential tail 

r = 3

η3 = 1

For ,  
TW tail 

r → ∞

η∞ =
3
2



Phase diagram for LDF (FRSB)

For a model with FRSB phase, one obtains for the LDF 

61
(LACT, Fyodorov & Le Doussal ’23)

ℒ(e) = − min
s

[se + ϕ(s)]
For , the behaviour of the LDF depends 

on the covariance

Γ = 0

g(q) ≈ g2q2 + grqr , q → 0

ℒ(e) = ξr |e − ec |ηr , e → etyp(Γ = 0) = ec

1 ≤ ηr =
3(r − 2)
2r − 3

≤
3
2

For , same exponent observed for the  
Sherrigton-Kirkpatrick model  

r = 4

η4 = 6/5
(Parisi & Rizzo ’08)
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Conclusion

We have studied systematically the atypical fluctuations of the ground-state energy of 
spherical spin-glasses 

Similar but more complex optimisation problem than for the typical GSE 

The large deviation of speed  is characterised by a rich phase diagram 

Replica-symmetry breaking may occur even if the typical GSE is replica-symmetric 

The study indicates the existence of new non-trivial universal distribution for the  

extreme value statistics of random landscapes  

The RS ansatz coincides with the opposite of the annealed complexity

N

63



To go further

Many directions to consider 

Fixed magnetic field 

Large deviation function with higher speed  (at least at zero magnetic field) 

SK: Parisi & Rizzo ’10 

Non mean-field / sparse models 

SK: Parisi & Rizzo ’09 

Study in more detail connection to complexity

sN ≫ N

64



Phase diagram for LDF (1RSB)

For a model with 1RSB phase, one obtains for the LDF 

65
(LACT, Fyodorov & Le Doussal ’23)



Phase diagram for LDF (1RSB)

For a model with 1RSB phase, one obtains for the LDF 
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Phase diagram for LDF (1RSB)

For a model with 1RSB phase, one obtains for the LDF 
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Phase diagram for LDF (1RSB)

For a model with 1RSB phase, one obtains for the LDF 

68
(LACT, Fyodorov & Le Doussal ’23)

For , the behaviour of the LDF is linearΓ = 0

ℒ(e) = − Σ′ min(ec) |e − ec | , e → etyp(Γ = 0) = ec

In the RS phase, the LDF saturates the bounds 

ℒRS(e) = − lim
N→∞

1
N

ln PN(e)=−Σmin(e) = −
1
N

ln 𝒩min(e)

ℒRS(ec) = − Σmin(ec) = 0


