
Fluctuations of the ground-state 
energy of spherical spin-glasses


Bertrand Lacroix-A-Chez-Toine, King’s College London

In collaboration with Pierre Le Doussal, Yan V. Fyodorov


EPSRC Grant EP/V002473/1

1
arXiv:2306.11927



Contents

Introduction


Typical ground-state energy


Fluctuations of the 2-spin


Fluctuations for FRSB models


Conclusion

2



High-dimensional random landscapes

A random landscape  is a random function of a large number  of 
degrees of freedom 


This is an important topic in physics, mathematics and beyond:


Spin-glass energy landscape


Utility function in economics


Cost function in machine learning


An ubiquitous problem is then to search for the exact (or at least approximate) 
global minimum or ground state energy of the energy landscape :


ℋ(x) N
x = {x1, ⋯, xN}

ℋ(x)

3

emin =
1
N

min
x

ℋ(x)

(See e.g. Ros, Fyodorov ’22)



Ground-state energy

The intensive ground-state energy (GSE) is self-averaging:


Typical fluctuations extend over a vanishing scale and are described by


Deriving the limiting distribution is clearly a problem of extreme value statistics 
for a strongly correlated random process
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lim
N→∞

emin = lim
N→∞

emin = etyp

lim
N→∞

Prob [emin ≥ etyp + eN + aN x] = 𝒫(−x)
lim

N→∞
eN = 0

lim
N→∞

aN = 0

lim
x→−∞

𝒫(x) = 0

lim
x→+∞

𝒫(x) = 1

(At least for mean-field models)



EVS for independent identically distributed 
(iid) random variables

This problem is fully characterised for iid random variables:
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Pjoint(x1, ⋯, xN) =
N

∏
i=1

p(xi)

lim
x→−∞

𝒫(x) = 0

lim
x→+∞

𝒫(x) = 1

lim
N→∞

Prob [xmin ≥ xN + aN x] = lim
N→∞ [∫

∞

xN+aN x
p(u) du]

N

= 𝒫i.i.d.(−x)

The coefficients  and 

Depend explicitly on the 

parent distribution 

xN aN

p(x)



EVS for independent identically distributed 
(iid) random variables

The distribution of typical fluctuations is universal and falls in one of three 
universality classes (Fisher–Tippett–Gnedenko theorem)
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Gumbel

Exponential or faster decay


𝒫I(x) = exp(−e−x)

Fréchet

Power-law decay


𝒫II,α(x) = exp(−x−α)Θ(x)

Weibull

Finite edge


𝒫III,β(x) = exp(−xβ)Θ(−x) + Θ(x)

Much more difficult for strongly


correlated random variables! 


Universal limiting distributions are expected as well


but a full characterisation is far from complete!
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General Spherical spin-glass model

The general spherical spin-glass model is defined as the Gaussian process


The simplest model consists in the -spin model, where
p

8

ℋ(x1)ℋ(x2) = N f ( x1 ⋅ x2

N )
N

∑
i=1

x2
i = Nℋ(x) = 0

f (q) =
∞

∑
r=2

gr qr+Γq = g(q)+Γq ∀r ≥ 2, gr ≥ 0

ℋ(x) = −
1
p

N

∑
i1,⋯,ip=1

Ji1,⋯,ip

p

∏
j=1

xij−
N

∑
i=1

hixi f (q) =
J2

p
qp+Γq

gr =
J2

p
δr,pRandom


p-body 

interaction

Random

magnetic


field



General Spherical spin-glass model

The general spherical spin-glass model is defined as the Gaussian process


The energy landscape of this model is:


 A model for the cost function of machine learning algorithms (Choramanska ’15) 


 A versatile model of constrained optimisation


 A prototypical model of strongly correlated stochastic process 
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ℋ(x1)ℋ(x2) = N f ( x1 ⋅ x2

N )
N

∑
i=1

x2
i = Nℋ(x) = 0

∀r ≥ 2, gr ≥ 0f (q) =
∞

∑
r=2

gr qr+Γq = g(q)+Γq



General Spherical spin-glass model

The general spherical spin-glass model is defined as the Gaussian process


Characterising the typical value and fluctuations of the GSE  is thus natural 
emin

emin =
1
N

min
x:x2=N

ℋ(x)
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ℋ(x1)ℋ(x2) = N f ( x1 ⋅ x2

N )
N

∑
i=1

x2
i = Nℋ(x) = 0

∀r ≥ 2, gr ≥ 0f (q) =
∞

∑
r=2

gr qr+Γq = g(q)+Γq



General Spherical spin-glass model

The general spherical spin-glass model is defined as the Gaussian process


Its typical ground-state energy can be computed using the replica method
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ℋ(x1)ℋ(x2) = N f ( x1 ⋅ x2

N )
N

∑
i=1

x2
i = Nℋ(x) = 0

∀r ≥ 2, gr ≥ 0

lim
N→∞

1
N

ln Zn = ϕn = max
Q>0

Φn(Q) Φn(Q) =
β2

2

n

∑
a,b=1

f (Qab) +
1
2

ln det Q +
n
2 (1 + ln 2π)

etyp = emin = − lim
β→∞

lim
n→0

ϕn

nβ

f (q) =
∞

∑
r=2

gr qr+Γq = g(q)+Γq



General Spherical spin-glass model

The general spherical spin-glass model is defined as the Gaussian process


It yields the Crisanti-Sommers formula (Crisanti & Sommers ‘92)
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ℋ(x1)ℋ(x2) = N f ( x1 ⋅ x2

N )
N

∑
i=1

x2
i = Nℋ(x) = 0

∀r ≥ 2, gr ≥ 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

f (q) =
∞

∑
r=2

gr qr+Γq = g(q)+Γq

Ψ [z(q); v, q0] =
1
2

v f′￼(1) + ∫
1

q0

dq z(q) f′￼(q) +
q0

v + ∫
1

q0

dq z(q)
+ ∫

1

q0

dq

v + ∫
1

q
dr z(r)



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92)


The explicit form of  depends on the covariance function  :z(q) f (q) = g(q) + Γq

13

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0] Ψ [z(q); v, q0] =
1
2

v f′￼(1) + ∫
1

q0

dq z(q) f′￼(q) +
q0

v + ∫
1

q0

dq z(q)
+ ∫

1

q0

dq

v + ∫
1

q
dr z(r)



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92)


The explicit form of  depends on the covariance function  :


 For  the solution is RS:  and/or 

z(q) f (q) = g(q) + Γq

Γ > ΓRSB = g′￼′￼(1) − g′￼(1) q0 = 1 z(q) = 0

14

etyp = emin = −
1
2

min
v≥0 [v f′￼(1) +

1
v ] = − g′￼(1) + Γ

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92)


The explicit form of  depends on the covariance function  :


 For  the solution is RS:  and/or 

z(q) f (q) = g(q) + Γq

Γ > ΓRSB = g′￼′￼(1) − g′￼(1) q0 = 1 z(q) = 0

15

etyp = emin = −
1
2

min
v≥0 [v f′￼(1) +

1
v ] = − g′￼(1) + Γ

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]

For the 2-spin  one has 


The typical GSE is always RS

 

g(q) =
J2

2
q2 ΓRSB = 0

etyp = − J2 + Γ



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92)


The explicit form of  depends on the covariance function  :


 For  the solution is RS:  and/or 


The energy landscape  is “topologically trivial” for this type of models: 


   it displays a sub-exponential number of local minima

z(q) f (q) = g(q) + Γq

Γ > ΓRSB = g′￼′￼(1) − g′￼(1) q0 = 1 z(q) = 0

ℋ(x)

16

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92)


The explicit form of  depends on the covariance function  :


 For  the solution is RSB


The energy landscape  is “topologically complex” for this type of models: 


   it displays an exponential number of local minima

z(q) f (q) = g(q) + Γq

Γ < ΓRSB

ℋ(x)
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 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92)


The explicit form of  depends on the covariance function  :


 For  the solution is RSB


Its number of RSB depends on the sign of the Schwarzian derivative

z(q) f (q) = g(q) + Γq

Γ < ΓRSB

18

𝒮[g′￼(q)] =
g(4)(q)
g′￼′￼(q)

−
3
2 ( g(3)(q)

g′￼′￼(q) )
2

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92)


The explicit form of  depends on the covariance function  :


 For  the solution is RSB


If  one has  the solution is 1RSB

z(q) f (q) = g(q) + Γq

Γ < ΓRSB

∀q ∈ [0,1] 𝒮[g′￼(q)] < 0

19

z(q) = {0 , q < q0

m0 > 0 , q > q0

The -spin is 1RSBp > 2

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92)


The explicit form of  depends on the covariance function  :


 For  the solution is RSB


If  one has  the solution is 1RSB

z(q) f (q) = g(q) + Γq

Γ < ΓRSB

∀q ∈ [0,1] 𝒮[g′￼(q)] < 0

20

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]

The exponentially many local minima of

 the random energy landscape are isolated,


separated by high barriers

Only local minima are found in a 

small range of energy around emin



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92)


The explicit form of  depends on the covariance function  :


 For  the solution is RSB


If  one has  the solution is FRSB

z(q) f (q) = g(q) + Γq

Γ < ΓRSB

∀q ∈ [0,1] 𝒮[g′￼(q)] > 0

21

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]

z(q) =
0 , q < q0

g(3)(q)
2g′￼′￼(q)3/2 ≥ 0 , q > q0



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92)


The explicit form of  depends on the covariance function  :


 For  the solution is RSB


If  one has  the solution is FRSB

z(q) f (q) = g(q) + Γq

Γ < ΓRSB

∀q ∈ [0,1] 𝒮[g′￼(q)] > 0

22

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]

There are many flat directions 

of the landscape  

All types of saddles are found in a 

small range of energy around emin



Replica symmetry (breaking) of the solution

Crisanti-Sommers formula (Crisanti & Sommers ’92)


The explicit form of  depends on the covariance function  :


 For  the solution is RSB


If  one has  the solution is FRSB

z(q) f (q) = g(q) + Γq

Γ < ΓRSB

∀q ∈ [0,1] 𝒮[g′￼(q)] > 0

23

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = 0

etyp = emin = − min
v≥0,0≤q0≤1,z(q)

Ψ [z(q); v, q0]

etyp = − qtyp g′￼′￼(qtyp) + ∫
1

qtyp

dq g′￼′￼(q) Γ = qtypg′￼′￼(qtyp) − g′￼(qtyp) As , 

 and the RS solution is recovered 

Γ → ΓRSB = g′￼′￼(1) − g′￼(1) qtyp → 1
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Spherical 2-spin model

For the spherical 2-spin model


Constrained optimisation problem:


Studied in detail in computer science (Conn et al. ’00, Tisseur & Meerberger ’01, …)

25


JijJkl =
J2

N
(δijδjl + δilδjk)

hihj = Γδij


Jij = 0
hi = 0

N

∑
i=1

x2
i = N

Random

2-body 


interaction

Random

magnetic


field

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

emin=
1
N

min
x:x2=N

ℋ(x)



Spherical 2-spin model

For the spherical 2-spin model


In absence of magnetic field  :


Distribution of the ground-state energy (GSE):


Γ = 0

PN(e) = δ (e − emin)

26

N

∑
i=1

x2
i = N

: Lowest eigenvalue of GOE matrix λminemin=
λmin

2
etyp = − J

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi



Spherical 2-spin model

For the spherical 2-spin model


In absence of magnetic field  :


Three non-trivial regimes of fluctuations 


Γ = 0

27

N

∑
i=1

x2
i = N

2N2/3ℱ1 (−2N2/3(e − etyp))
e−Nℒ(e)

Typical fluctuations N2/3 |e − etyp | = O(1)

Left atypical fluctuations e < etyp

Right atypical fluctuations e > etype−N2ℛ(e)

: Lowest eigenvalue of GOE matrix λminemin=
λmin

2
etyp = − J

 : Tracy-Widom GOE distribution ℱ1 (x)

Tracy & Widom ‘96

Dean, Majumdar ’06


Ben Arous, Dembo & Guionnet ’01

Majumdar & Vergassola ’09 

GOE: Gaussian Orthogonal Ensemble 

PN(e) ≈

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi



Matching of the tails

One can show explicitly a matching between the tails of the TW and the behaviours of 
the large deviation functions (LDFs)


28

Typical fluctuations: Tracy-Widom


−ln ℱ1(−x) =

2
3

|x |3/2 , x → − ∞

|x |3

24
, x → + ∞

Atypical fluctuations: LDFs


, 


, 

Nℒ(e) ≈
2N
3 (−2(e + J ))3/2 e → − J−

N2ℛ(e) ≈
N2

24 (2(e + J ))3 e → − J+

x = 2N2/3(e + J )



Spherical 2-spin model

For the spherical 2-spin model


For positive magnetic field  :


The ground-state energy satisfies a central limit theorem (Chen & Sen ‘17)


Gaussian typical fluctuations

Γ > 0

29

N

∑
i=1

x2
i = N

lim
N→∞

N Var(emin) = 𝒱min =
Γ
2

etyp = emin = − lim
β→∞

lim
n→0

ϕn

nβ
= − J2 + Γ

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

hihj = Γδij



Spherical 2-spin model

For the spherical 2-spin model


The atypical fluctuations are described by a large deviation function (LDF)


30

N

∑
i=1

x2
i = N

ℒ(e) = − lim
N→∞

1
N

ln PN(e)

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

hihj = Γδij



Spherical 2-spin model

For the spherical 2-spin model


The atypical fluctuations are described by a large deviation function (LDF)


Its Legendre transform is the scaled cumulant generating function (CGF) and can be 
computed using replica computations 
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N

∑
i=1

x2
i = N

ℒ(e) = − lim
N→∞

1
N

ln PN(e)

ϕ(s) = − min
e

[se + ℒ(e)] = lim
β→∞

ϕs/βlim
β→∞

1
N

ln Zs/β =
1
N

ln e−Nsemin =
1
N

ln∫ de e−N[se + ℒ(e)]

emin = − lim
β→∞

1
Nβ

ln Z

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

hihj = Γδij




Overlap matrix

Qab =
xa ⋅ xb

Nlim
N→∞

1
N

ln Zn = ϕn



Spherical 2-spin model

For the spherical 2-spin model


The CGF and the LDF were first computed using a RS ansatz


Its expression extends for 
e < ec,RS

32

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

N

∑
i=1

x2
i = N

hihj = Γδij

RS: Fyodorov & Le Doussal ’14



Spherical 2-spin model

For the spherical 2-spin model


Using a rigorous approach the CGF and the LDF were shown to display two branches:
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 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

N

∑
i=1

x2
i = N

The transition is of third order

, ℒRS(e) − ℒRSB(e) ∝ (e − eRSB)3 e → eRSB

hihj = Γδij

ℒ(e) = − lim
N→∞

1
N

ln PN(e) =

ℒRS(e) , e < eDZ

ℒDZ(e) , ec > e > eDZ ,

+∞ , e > ec

RS: Fyodorov & Le Doussal ’14

Rigorous: Dembo & Zeitouni ’15

The real extent of the 

RS solution is e < eRSB ≤ ec,RS



Spherical 2-spin model

For the spherical 2-spin model


We showed that the mechanism behind these two branches is RSB
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 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

N

∑
i=1

x2
i = N

ℒ(e) = − lim
N→∞

1
N

ln PN(e) =

ℒRS(e) , e < eRSB

ℒRSB(e) , ec > e > eRSB ,

+∞ , e > ec

hihj = Γδij

RS: Fyodorov & Le Doussal ’14

Rigorous: Dembo & Zeitouni ’15

One eigenvalues of 


becomes positive for 

A(ab),(cd) =
δ2Φn=s/β(Q)
δQabδQcd

e > eRSB

 Mechanism: 

LACT, Fyodorov & Le Doussal ‘23



Spherical 2-spin model

For the spherical 2-spin model


The CGF and the LDF each display two distinct branches: an RS and an RSB branch


The LDF diverges beyond a finite 


critical energy ec = etyp(Γ = 0) = − J

35

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

N

∑
i=1

x2
i = N

ℒ(e) = − lim
N→∞

1
N

ln PN(e) =

ℒRS(e) , e < eRSB

ℒRSB(e) , ec > e > eRSB ,

+∞ , e > ec

ℒRSB(e) ≈ −
1
2

ln(ec − e) , e → ec

hihj = Γδij



Spherical 2-spin model

For the spherical 2-spin model


The CGF and the LDF each display two distinct branches: an RS and an RSB branch


The fluctuations for  are either 


described by a LDF with rate  


(Most probably ) or completely suppressed

e > ec

sN ≫ N

N2

36

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

N

∑
i=1

x2
i = N

ℒ(e) = − lim
N→∞

1
N

ln PN(e) =

ℒRS(e) , e < eRSB

ℒRSB(e) , ec > e > eRSB ,

+∞ , e > ec

hihj = Γδij



Spherical 2-spin model

For the spherical 2-spin model


The CGF and the LDF each display two distinct branches: an RS and an RSB branch


37

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

N

∑
i=1

x2
i = N

ℒ(e) = − lim
N→∞

1
N

ln PN(e) =

ℒRS(e) , e < eRSB

ℒRSB(e) , ec > e > eRSB ,

+∞ , e > ec

The RS branch of the LDF matches in the 
vicinity of  the Gaussian tail of the 
limiting PDF

etyp

, ℒRS(e) ≈
(e − etyp)

2

2𝒱min
e → etyp

hihj = Γδij



Spherical 2-spin model

For the spherical 2-spin model


Taking the limit , only the RS branch appears
Γ → 0

38

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

N

∑
i=1

x2
i = N

ℒ(e) = − lim
N→∞

1
N

ln PN(e) =
ℒRS(e) , e < eRSB = − J

+∞ , e > ec = − J

The rescaled variance vanishes 

The 3/2 tail of the TW is recovered

𝒱min → 0

, ℒRS(e) ≈
4 2

3
|e + J |3/2 e → etyp(Γ = 0) = ec = − J

hihj = Γδij



Spherical 2-spin model

For the spherical 2-spin model


The LDF of the 2-spin are described by the following phase diagram


39

 ℋ(x) = −
1
2 ∑

i, j

xiJijxj −∑
i=1

hixi

N

∑
i=1

x2
i = N

hihj = Γδij






ec = − J
etyp(Γ) = − J + Γ2

eRSB(Γ) = − J (1 +
J2

2(J2 + Γ) )
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Typical fluctuations of the GSE 

The distribution of the GSE 


PN(e) = δ (e − emin) ≈ aN𝒫 (aN(e − etyp − eN))

42

N → ∞



Typical fluctuations of the GSE 

The distribution of the GSE 





For , the GSE satisfies a central limit theorem and for models with FRSB

PN(e) = δ (e − emin) ≈ aN𝒫 (aN(e − etyp − eN))
Γ > 0

43

etyp = − qtyp g′￼′￼(qtyp) + ∫
1

qtyp

dq g′￼′￼(q)
Γ = qtypg′￼′￼(qtyp) − g′￼(qtyp)

lim
N→∞

N Var(emin) = 𝒱min = g(qtyp) +
Γ − g′￼(qtyp)

2

(Chen & Sen ’17)

N → ∞



Typical fluctuations of the GSE 

The distribution of the GSE 





For  and the -spin model:


 The typical fluctuations of the GSE are described by a Gumbel distribution

PN(e) = δ (e − emin) ≈ aN𝒫 (aN(e − etyp − eN))
Γ = 0 p > 2

44

lim
N→∞

Prob [emin ≥ etyp + eN + aN x] = 𝒢(−x)
eN ∼

1
2N

ln N

aN ∼
1
N 𝒢(x) = exp (−e−x)

(Subag & Zeitouni ’17)

N → ∞



Typical fluctuations of the GSE 

The distribution of the GSE 





No general result for 


There exists a general bound from the average density of minima of :


  


The density of minima can be computed using Kac-Rice formula


PN(e) = δ (e − emin) ≈ aN𝒫 (aN(e − etyp − eN))
Γ = 0

ℋ(x)

PN(e) = δ (e − emin) ≤ 𝒩min(e) = ∑
α:minima of ℋ(x)

δ(e − eα)

𝒩min(e) = ∫x2=N
dx δ (e −

ℋ(x)
N ) δ (∇ℋ(x)) det (∇2ℋ(x)) Θ(∇2ℋ(x))

45

(See e.g. Ros, Fyodorov ’22)

N → ∞



Atypical fluctuations of the GSE 

An alternative indirect method consists in analysing the atypical fluctuations


They are characterised by the LDF:





The behaviour of the LDF in the vicinity of 





Is expected to match the left tail of the PDF 





ℒ(e) = − lim
N→∞

1
N

ln PN(e)

etyp

Nℒ(e) ≈ Nβ |e − etyp |α , e → etyp

−ln 𝒫(aN x) = aα
N β |x |α , x → − ∞

aN ∼ N1/α

46

Question investigated for 

Sherrington-Kirkpatrick (SK)


in a series of papers by

Parisi & Rizzo ’08 ’09 ’10 



Atypical fluctuations of the GSE 

An alternative indirect method consists in analysing the atypical fluctuations


They are characterised by the LDF:


  
ℒ(e) = − lim
N→∞

1
N

ln PN(e) ≤ −Σmin(e) = lim
N→∞

−
1
N

ln 𝒩min(e)

47

The LDF is bounded in terms of the annealed complexity of minima



Atypical fluctuations of the GSE 

The atypical fluctuations are characterised by the LDF:





As for the 2-spin model, the scaled CGF can be computed using replica computations

ℒ(e) = − lim
N→∞

1
N

ln PN(e)

48

ϕ(s) = − min
e

[se+ℒ(e)] = lim
β→∞

ϕs/β emin = − lim
β→∞

1
Nβ

ln Z

lim
N→∞

1
N

ln Zn = ϕn = max
Q>0

Φn(Q) Φn(Q) =
β2

2

n

∑
a,b=1

f (Qab) +
1
2

ln det Q +
n
2 (1 + ln 2π)



Atypical fluctuations of the GSE 

The expression of the CGF takes a similar form as the Crisanti-Sommers formula


49

ϕ(s) = − min
e

[se + ℒ(e)] = lim
β→∞

ϕs/β =

max
v≥0,0<q0<1,z(q)

Φ(s) , s > 0

0 , s = 0
min

v≥0,0<q0<1,z(q)
Φ(s) , s < 0

+
s
2 ∫

1

q0

dq

v + ∫
1

q
dr z(r)

.

Φ(s) =
s
2 [sf (q0) + vf′￼(1) + ∫

1

q0

dq z(q) f′￼(q)] +
1
2

ln (sq0 + v + ∫
1

q0

dq z(q)) − ln (v + ∫
1

q0

dq z(q))

(LACT, Fyodorov & Le Doussal ’23)

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = s



Atypical fluctuations of the GSE 

The expression of the CGF takes a similar form as the Crisanti-Sommers formula


50

ϕ(s) = − min
e

[se + ℒ(e)] = lim
β→∞

ϕs/β =

max
v≥0,0<q0<1,z(q)

Φ(s) , s > 0

0 , s = 0
min

v≥0,0<q0<1,z(q)
Φ(s) , s < 0

(LACT, Fyodorov & Le Doussal ’23)

 : non-decreasing function of  with z(q) q ∈ [0,1] z(q < q0) = s

As for the 2-spin, the CGF may undergo RSB transitions 

The location of the transition depends on  s



Atypical fluctuations of the GSE 

The expression of the CGF takes a similar form as the Crisanti-Sommers formula
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(LACT, Fyodorov & Le Doussal ’23)

The typical GSE is recovered

etyp = − ϕ′￼(0) = − min

v≥0,0<q0<1,z(q)
Φ′￼(0)

And the rescaled variance 

can be obtained


lim
N→∞

N Var(emin) = 𝒱min

ϕ(s) = − min
e

[se + ℒ(e)] = lim
β→∞

ϕs/β =

max
v≥0,0<q0<1,z(q)

Φ(s) , s > 0

0 , s = 0
min

v≥0,0<q0<1,z(q)
Φ(s) , s < 0



Atypical fluctuations of the GSE 

The expression of the CGF takes a similar form as the Crisanti-Sommers formula
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(LACT, Fyodorov & Le Doussal ’23)

Taking the Legendre transform, one obtains the LDF

ℒ(e) = − min

s
[se + ϕ(s)]

ϕ(s) = − min
e

[se + ℒ(e)] = lim
β→∞

ϕs/β =

max
v≥0,0<q0<1,z(q)

Φ(s) , s > 0

0 , s = 0
min

v≥0,0<q0<1,z(q)
Φ(s) , s < 0



Phase diagram for LDF

For a model with FRSB phase, one obtains for the LDF
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(LACT, Fyodorov & Le Doussal ’23)

𝒮[g′￼(q)] =
g(4)(q)
g′￼′￼(q)

−
3
2 ( g(3)(q)

g′￼′￼(q) )
2

The criterion for the number of RSB is again Schwarzian derivative

If  one has  the model is FRSB∀q ∈ [0,1] 𝒮[g′￼(q)] > 0

ℒ(e) = − min
s

[se + ϕ(s)]



Phase diagram for LDF (FRSB)

For a model with FRSB phase, one obtains for the LDF
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(LACT, Fyodorov & Le Doussal ’23)

For any , there is both an RS and FRSB branchΓ ≥ 0

One eigenvalues of 


becomes positive for 

A(ab),(cd) =
δ2Φn=s/β(Q)
δQabδQcd

e > eRSB

ℒ(e) = − min
s

[se + ϕ(s)]≤−Σmin(e) = −
1
N

ln 𝒩min(e)

Bound from complexity



Phase diagram for LDF (FRSB)

For a model with FRSB phase, one obtains for the LDF
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(LACT, Fyodorov & Le Doussal ’23)

ℒ(e) = − min
s

[se + ϕ(s)]≤−Σmin(e) = −
1
N

ln 𝒩min(e)

In the RS phase, the LDF saturates the bounds


ℒRS(e) = − lim
N→∞

1
N

ln PN(e)=−Σmin(e) = −
1
N

ln 𝒩min(e)

Bound from complexity



Phase diagram for LDF (FRSB)

For a model with FRSB phase, one obtains for the LDF
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(LACT, Fyodorov & Le Doussal ’23)

ℒ(e) = − min
s

[se + ϕ(s)]



Phase diagram for LDF (FRSB)

For a model with FRSB phase, one obtains for the LDF
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(LACT, Fyodorov & Le Doussal ’23)

For , the LDF is quadratic around 

matching the Gaussian distribution
Γ > 0 etyp

, 
ℒ(e) ≈
(e − etyp)

2

2𝒱min
e → etyp



Phase diagram for LDF (FRSB)

For a model with FRSB phase, one obtains for the LDF
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(LACT, Fyodorov & Le Doussal ’23)



Phase diagram for LDF (FRSB)

For a model with FRSB phase, one obtains for the LDF
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(LACT, Fyodorov & Le Doussal ’23)

ℒ(e) = − min
s

[se + ϕ(s)]
For , the behaviour of the LDF depends


on the covariance

Γ = 0

By matching, new family of PDF for extreme values statistics with universal tails!

g(q) ≈ g2q2 + grqr , q → 0

ℒ(e) = ξr |e − ec |ηr , e → etyp(Γ = 0) = ec

1 ≤ ηr =
3(r − 2)
2r − 3

≤
3
2



Phase diagram for LDF (FRSB)

For a model with FRSB phase, one obtains for the LDF
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(LACT, Fyodorov & Le Doussal ’23)

ℒ(e) = − min
s

[se + ϕ(s)]
For , the behaviour of the LDF depends


on the covariance

Γ = 0

g(q) ≈ g2q2 + grqr , q → 0

ℒ(e) = ξr |e − ec |ηr , e → etyp(Γ = 0) = ec

1 ≤ ηr =
3(r − 2)
2r − 3

≤
3
2

For , 

exponential tail


r = 3

η3 = 1

For , 

TW tail


r → ∞

η∞ =
3
2



Phase diagram for LDF (FRSB)

For a model with FRSB phase, one obtains for the LDF
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(LACT, Fyodorov & Le Doussal ’23)

ℒ(e) = − min
s

[se + ϕ(s)]
For , the behaviour of the LDF depends


on the covariance

Γ = 0

g(q) ≈ g2q2 + grqr , q → 0

ℒ(e) = ξr |e − ec |ηr , e → etyp(Γ = 0) = ec

1 ≤ ηr =
3(r − 2)
2r − 3

≤
3
2

For , same exponent observed for the 

Sherrigton-Kirkpatrick model 


r = 4

η4 = 6/5
(Parisi & Rizzo ’08)
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Conclusion

We have studied systematically the atypical fluctuations of the ground-state energy of 
spherical spin-glasses


Similar but more complex optimisation problem than for the typical GSE


The large deviation of speed  is characterised by a rich phase diagram


Replica-symmetry breaking may occur even if the typical GSE is replica-symmetric


The study indicates the existence of new non-trivial universal distribution for the 


extreme value statistics of random landscapes 


The RS ansatz coincides with the opposite of the annealed complexity

N

63



To go further

Many directions to consider


Fixed magnetic field


Large deviation function with higher speed  (at least at zero magnetic field)


SK: Parisi & Rizzo ’10


Non mean-field / sparse models


SK: Parisi & Rizzo ’09


Study in more detail connection to complexity

sN ≫ N
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Phase diagram for LDF (1RSB)

For a model with 1RSB phase, one obtains for the LDF
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(LACT, Fyodorov & Le Doussal ’23)
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Phase diagram for LDF (1RSB)

For a model with 1RSB phase, one obtains for the LDF


68
(LACT, Fyodorov & Le Doussal ’23)

For , the behaviour of the LDF is linearΓ = 0

ℒ(e) = − Σ′￼min(ec) |e − ec | , e → etyp(Γ = 0) = ec

In the RS phase, the LDF saturates the bounds


ℒRS(e) = − lim
N→∞

1
N

ln PN(e)=−Σmin(e) = −
1
N

ln 𝒩min(e)

ℒRS(ec) = − Σmin(ec) = 0


