Glass dynamics and Signal reconstruction in rough landscapes

INFN

SAPIENZA
Universitì di Roma

Baity-Jesi, Sagun, Geiger, Spiegler, Ben Arous, Cammarota, LeCun, Wyart, Biroli PMLR 2018 Ros, Ben Arous, Biroli, Cammarota PRX 2019

(1)

FUTURE AI RESEARCH

Glasses and aging dynamics

amorphous solids, or stuck liquids

$$
H=\sum_{i<j} V\left(r_{i j}\right) ; \quad r_{i j}=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|
$$

Glasses and aging dynamics

amorphous solids, or stuck liquids

$$
H=\sum_{i<j} V\left(r_{i j}\right) ; \quad r_{i j}=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|
$$

Sciortino 2005

A mean field model of glass transition

p-spin model ($\mathrm{p}>2$)

$$
H=-\sum J_{i_{1} \ldots i_{p}} s_{i_{1}} \ldots s_{i_{p}}
$$

$$
\left(i_{1}, \ldots, i_{p}\right) \quad \text { Derrida 1980, Crisanti, Sommers } 1992
$$

New dynamical properties, i.e. aging Cugliandolo, Kurchan 1993

A mean field model of glass transition

p-spin model ($\mathrm{p}>2$)

$$
\boldsymbol{H}=\quad J_{i_{1} \ldots i_{p}} S_{i_{1}} \ldots . S_{i_{p}}
$$

(i_{1}, \ldots, i_{p}) Derrida 1980, Crisanti, Sommers 1992
New dynamical properties, i.e. aging Cugliandolo, Kurchan 1993

Energy

A mean field model of glass transition

p-spin model ($\mathrm{p}>2$)

$$
H=-\sum J_{i_{1} \ldots i_{p}} s_{i_{1}} \ldots s_{i_{p}}
$$

(i_{1}, \ldots, i_{p}) Derrida 1980, Crisanti, Sommers 1992
New dynamical properties, i.e. aging Cugliandolo, Kurchan 1993

Spectrum of the Hessian

A mean field model of glass transition

p-spin model ($\mathrm{p}>2$)

$$
H=-\quad \sum J_{i_{1} \ldots i_{p}} s_{i_{1}} \ldots s_{i_{p}}
$$

(i_{1}, \ldots, i_{p}) Derrida 1980, Crisanti, Sommers 1992
New dynamical properties, i.e. aging

Spectrum of the Hessian

Machine Learning

Dynamical experiments to infer the landscape

Machine Learning

Estimation of a function able to classify images

Machine Learning

Estimation of a function able to classify images

Machine Learning

Estimation of a function able to classify images

Machine Learning

Estimation of a function able to classify images

Machine Learning

Estimation of a function able to classify images

Machine Learning os glass quenches

distance between output and correct answer, i.e.

$$
\ell\left(\{w\} ; \mathbf{X}^{\alpha}, Y^{\alpha}\right)=\left(Y^{\alpha}-f\left(\{w\} ; \mathbf{X}^{\alpha}\right)\right)^{2}
$$

Loss function

$$
\mathcal{L}\{w\}=\frac{1}{M} \sum_{\alpha}^{M} \ell\left(\{w\} ; \mathbf{X}^{\alpha}, Y^{\alpha}\right)
$$

Machine Learning os glass quenches

distance between output and correct answer, i.e.

$$
\ell\left(\{w\} ; \mathbf{X}^{\alpha}, Y^{\alpha}\right)=\left(Y^{\alpha}-f\left(\{w\} ; \mathbf{X}^{\alpha}\right)\right)^{2}
$$

Loss function

$$
\mathcal{L}\{w\}=\frac{1}{M} \sum_{\alpha}^{M} \ell\left(\{w\} ; \mathbf{X}^{\alpha}, Y^{\alpha}\right)
$$

Learning (training): minimise the Loss function from random initial condition
Stochastic Gradient Descent $\quad \mathbf{w}(t+\Delta t)=\mathbf{w}(t)-\eta \nabla_{w} \sum_{\alpha}^{B} \ell\left(\{w\} ; \mathbf{X}^{\alpha}, Y^{\alpha}\right)$

Machine Learning os glass quenches

distance between output and correct answer, i.e.

$$
\ell\left(\{w\} ; \mathbf{X}^{\alpha}, Y^{\alpha}\right)=\left(Y^{\alpha}-f\left(\{w\} ; \mathbf{X}^{\alpha}\right)\right)^{2}
$$

Loss function

$$
\mathcal{L}\{w\}=\frac{1}{M} \sum_{\alpha}^{M} \ell\left(\{w\} ; \mathbf{X}^{\alpha}, Y^{\alpha}\right)
$$

Learning (training): minimise the Loss function from random initial condition
Stochastic Gradient Descent $\quad \mathbf{w}(t+\Delta t)=\mathbf{w}(t)-\eta \nabla_{w} \sum_{\alpha}^{B} \ell\left(\{w\} ; \mathbf{X}^{\alpha}, Y^{\alpha}\right)$

Quenches : rapid coolings from high temperature, i.e. almost random initial configuration

Relaxation dynamics $\quad \dot{r}_{\alpha, i}(t)=-\nabla_{\alpha, i} H+\eta_{\alpha, i}(t)$

How is learning dynamics? How the loss landscape?

Learning as interrupted Aging and Diffusion

Baity-Jesi, Sagun, Geiger, Spiegler, Ben Arous, Cammarota, LeCun, Wyart, Biroli PMLR 2018

Toy model: 1 hidden layer, ReLU, sigmoid in output, MSE as a loss Fully connected: 3 hidden layers, ReLU, log likelihood Small Net: 2 hidden convolutional layers,

2 fully connected ReLU, log likelihood
ResNet18: 18 hidden convolutional layers
MNIST, CFAR-10, CFAR-100

Mean Square displacement

(c) Small Net on CIFAR-10, $B=100, \alpha=0.01$.

Learning as interrupted Aging and Diffusion

Baity-Jesi, Sagun, Geiger, Spiegler, Ben Arous, Cammarota, LeCun, Wyart, Biroli PMLR 2018

Toy model: 1 hidden layer, ReLU, sigmoid in output, MSE as a loss Fully connected: 3 hidden layers, ReLU, log likelihood Small Net: 2 hidden convolutional layers,

2 fully connected ReLU, log likelihood
ResNet18: 18 hidden convolutional layers
MNIST, CFAR-10, CFAR-100

Mean Square displacement

(c) Small Net on CIFAR-10, $B=100, \alpha=0.01$.

Flat bottom of the Loss landscape!
Dr. Chiara Cammarota

Aging is restored for under-parametrised NN!

Toy model: 1 hidden layer (MUCH SMALLER), ReLU, sigmoid in output, MSE as a loss

(a) Loss of the under-parametrized model.

(b) Mean square displacement of the under-parametrized model.

Much more on Machine Learning

Three intertwined elements in machine learning:
training algorithm
data structure
network structure

How SGD works in state of the art machine learning? (path)
Many people (Franz Goldt Saad Saxe Urbani etc)

How generalisation is achieved? (outcome)
Many people (Biroli Montanari Zecchina etc)

How all this can be improved?
Milder overparametrization
Optimised algorithm (mostly SGD)
Improved use of the data

Inference

From landscape structure to algorithmic predictions..and optimisation

An example of signal reconstruction

MATRIX PCA, TENSOR PCA, MIXED MODELS

An example of signal reconstruction

MATRIX PCA, TENSOR PCA, MIXED MODELS

Estimation of rank-one k-tensor from a noisy channel(s)
Observation Corrupting noise Signal

$$
T_{i_{1}, \ldots, i_{k}}=W_{i_{1}, \ldots, i_{k}}+v_{i_{1}} \ldots v_{i_{k}}
$$

Maximum likelihood estimator: minimum squared distance

$$
H_{k}=-\sum_{\left(i_{1}, \ldots, i_{k}\right)}\left(T_{i_{1}, \ldots, i_{k}}-x_{i_{1}} \ldots x_{i_{k}}\right)^{2} \propto-\sum_{\left(i_{1}, \ldots, i_{k}\right)} J_{i_{1}, \ldots, i_{k}} x_{i_{1}} \ldots x_{i_{k}}-r N\left(\sum_{i} \frac{x_{i} v_{i}}{N}\right)^{k}+\mathrm{const}
$$

with $J_{i_{1}, \ldots, i_{k}} \propto W_{i_{1}, \ldots, i_{k}}$ and r signal to noise ratio
..also MIXED matrix / tensor models

Landscape hints of signal reconstruction

$$
\dot{\mathbf{x}}=-\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}(t))+\mu(t) \mathbf{x}(t)
$$

Minimisation via gradient flow on the sphere from random initial condition, where likelihood / cost landscape is rough

Landscape matter: gradient, Hessian

Tensor PCA: the full landscape structure

Kac-Rice formula to enumerate stationary points (at any risk/likelyhood level and latitude)

$$
\mathcal{N}_{N}(E, \bar{q} ; r)=\int \prod_{i} d x_{i} \delta\left(\nabla_{x} H_{r}\right)\left|\operatorname{det} \nabla^{2} H\right| \delta(H-E) \delta\left(\sum_{i} v_{i} x_{i}-N \bar{q}\right)
$$

Beyond annealed computation: Replicated Kac-Rice
Subag 2015

$$
\left\langle\log \mathcal{N}_{N}(E, \bar{q} ; r)\right\rangle=\lim _{n \rightarrow 0} \frac{\left\langle\mathcal{N}(E, \bar{q} ; r)^{n}\right\rangle-1}{n}
$$

$>$ Structure of stationary points
$>$ Distribution of Hessians eigenvalues

Tensor PCA: the full landscape $\underset{\text { Ros Ben Arous Biroli Cai }}{\text { stre }}$

Kac-Rice formula to enumerate stationary points (at any risk/likelyhood level and latitude)

$$
\mathcal{N}_{N}(E, \bar{q} ; r)=\int \prod_{i} d x_{i} \delta\left(\nabla_{x} H_{r}\right)\left|\operatorname{det} \nabla^{2} H\right| \delta(H-E) \delta\left(\sum_{i} v_{i} x_{i}-N \bar{q}\right)
$$

Beyond annealed computation: Replicated Kac

$$
\left\langle\log \mathcal{N}_{N}(E, \bar{q} ; r)\right\rangle=\lim _{n \rightarrow 0} \frac{\left\langle\mathcal{N}(E, \bar{q} ; r)^{n}\right\rangle-1}{n}
$$

$>$ Structure of stationary points
$>$ Distribution of Hessians eigenvalues

Tensor PCA: the full landscape $\underset{\text { Ros Ben Arous, Biroli, Cai }}{\text { stru }}$

Kac-Rice formula to enumerate stationary points (at any risk/likelyhood level and latitude)

$$
\mathcal{N}_{N}(E, \bar{q} ; r)=\int \prod_{i} d x_{i} \delta\left(\nabla_{x} H_{r}\right)\left|\operatorname{det} \nabla^{2} H\right| \delta(H-E) \delta\left(\sum_{i} v_{i} x_{i}-N \bar{q}\right)
$$

Beyond annealed computation: Replicated Kac

$$
\left\langle\log \mathcal{N}_{N}(E, \bar{q} ; r)\right\rangle=\lim _{n \rightarrow 0} \frac{\left\langle\mathcal{N}(E, \bar{q} ; r)^{n}\right\rangle-1}{n}
$$

Matrix-Tensor PCA: how gradient flow escapes minima

Sarao, Biroli, Cammarota, Krzakala, Zdeborova Spotlight at NIPS 2019

Matrix-Tensor PCA: how gradient flow escapes minima

Sarao, Biroli, Cammarota, Krzakala, Zdeborova Spotlight at NIPS 2019

Matrix-Tensor PCA: how gradient flow escapes minima

Sarao, Biroli, Cammarota, Krzakala, Zdeborova Spotlight at NIPS 2019

Matrix-Tensor PCA: how gradient flow escapes minima

Sarao, Biroli, Cammarota, Krzakala, Zdeborova Spotlight at NIPS 2019

Matrix-Tensor PCA: how gradient flow escapes minima

Sarao, Biroli, Cammarota, Krzakala, Zdeborova Spotlight at NIPS 2019

When less is better: AMP vs Langevin

Sarao, Biroli, Cammarota, Krzakala, Urbani, Zdeborova PRX 2020

$$
\begin{array}{ll}
T_{i, j}=W_{i, j}+v_{i} v_{j} & \left\langle W_{i, j}^{2}\right\rangle=\Delta_{W} \\
S_{k, l, m}=Z_{k, l, m}+v_{k} v_{l} v_{m} & \left\langle Z_{k, l, m}^{2}\right\rangle=\Delta_{Z}
\end{array}
$$

$$
{ }_{2.0}^{2.5} \quad \ddots \quad \ddots_{0} \quad H=-\sum_{\left(i_{1}, \ldots, i_{p}\right)} J_{i_{1}, \ldots, i_{p}} x_{i_{1}} \ldots x_{i_{p}}-r N\left(\sum_{i} \frac{x_{i} v_{i}}{N}\right)^{k}
$$

$$
H_{\mathrm{tot}}=H_{p=2, k=2}+H_{p=3, k=3}
$$

AMP much better than Langevin!

When less is better: AMP vs Langevin

Sarao, Biroli, Cammarota, Krzakala, Urbani, Zdeborova PRX 2020

$$
\begin{array}{ll}
T_{i, j}=W_{i, j}+v_{i} v_{j} & \left\langle W_{i, j}^{2}\right\rangle=\Delta_{W} \\
S_{k, l, m}=Z_{k, l, m}+v_{k} v_{l} v_{m} & \left\langle Z_{k, l, m}^{2}\right\rangle=\Delta_{Z}
\end{array}
$$

$$
{ }_{2.0}^{2.5} \quad \ddots \quad \begin{array}{ll}
{ }_{2} \\
& \ddots
\end{array} \quad H=-\sum_{\left(i_{1}, \ldots, i_{p}\right)} J_{i_{1}, \ldots, i_{p}} x_{i_{1}} \ldots x_{i_{p}}-r N\left(\sum_{i} \frac{x_{i} v_{i}}{N}\right)^{k}
$$

$$
H_{\mathrm{tot}}=H_{p=2, k=2}+H_{p=3, k=3}
$$

AMP much better than Langevin!

However Langevin would work more efficiently on $H_{p=2, k=2}$ only ... at least in the vicinity of the equator

When less is better: AMP vs Langevin

Sarao, Biroli, Cammarota, Krzakala, Urbani, Zdeborova PRX 2020

$$
\begin{array}{ll}
\hline T_{i, j}=W_{i, j}+v_{i} v_{j} & \left\langle W_{i, j}^{2}\right\rangle=\Delta_{W} \quad\left\langle Z_{k, l, m}^{2}\right\rangle=\Delta_{Z} \\
S_{k, l, m}=Z_{k, l, m}+v_{k} v_{l} v_{m}
\end{array}
$$

$$
H=-\sum_{\left(i_{1}, \ldots, i_{p}\right)} J_{i_{1}, \ldots, i_{p}} x_{i_{1}} \ldots x_{i_{p}}-r N\left(\sum_{i} \frac{x_{i} v_{i}}{N}\right)^{k}
$$

$$
H_{\mathrm{tot}}=H_{p=2, k=2}+H_{p=3, k=3}
$$

AMP much better than Langevin!

However Langevin would work more efficiently on $H_{p=2, k=2}$ only ... at least in the vicinity of the equator

When less is better: AMP vs Langevin

Sarao, Biroli, Cammarota, Krzakala, Urbani, Zdeborova PRX 2020

$$
\begin{array}{ll}
T_{i, j}=W_{i, j}+v_{i} v_{j} & \left\langle W_{i, j}^{2}\right\rangle=\Delta_{W} \quad\left\langle Z_{k, l, m}^{2}\right\rangle=\Delta_{Z} \\
S_{k, l, m}=Z_{k, l, m}+v_{k} v_{l} v_{m}
\end{array}
$$

However Langevin would work more efficiently on $H_{p=2, k=2}$ only ... at least in the vicinity of the equator

Given problem / algorithm used, landscape info can help to chose the best strategy

Troning the landscape

$$
H=-\sum_{\left(i_{1}, \ldots, i_{k}\right)} J_{i_{1}, \ldots, i_{k}} x_{i_{1}} \ldots x_{i_{k}}-r N\left(\sum_{i} \frac{x_{i} v_{i}}{N}\right)^{k}
$$

IT $\quad \lambda_{I T} \sim O(1)$
AMP, GD $\quad \lambda_{A L} \sim N^{\frac{k-2}{2}}$
Tensor Unfolding, SOS $\lambda_{A L} \sim N^{\frac{k-2}{4}}$
Idea: sample the landscape on R points

$$
-\frac{x_{C M}(t+1)-x_{C M}(t)}{\eta}=\frac{1}{R} \sum_{a=1}^{R} \mathbf{g}_{a}=\frac{1}{R} \sum_{a=1}^{R}\left(r \mathbf{g}_{\mathbf{s}}+\mathbf{g}_{\mathbf{n}_{a}}\right)=r \mathbf{g}_{\mathbf{s}}+\mathbf{g}_{\mathbf{n}_{R}} \quad{ }^{\mathrm{r}} \quad \mathbf{g}_{\mathbf{n}_{R}} \sim \frac{\mathbf{g}_{\mathbf{n}_{a}}}{\sqrt{R}}
$$

Troning the landscape

$$
H=-\sum_{\left(i_{1}, \ldots, i_{k}\right)} J_{i_{1}, \ldots, i_{k}} x_{i_{1}} \ldots x_{i_{k}}-r N\left(\sum_{i} \frac{x_{i} v_{i}}{N}\right)^{k}
$$

IT $\quad \lambda_{I T} \sim O(1)$
AMP, GD $\quad \lambda_{A L} \sim N^{\frac{k-2}{2}}$
Tensor Unfolding, SOS $\lambda_{A L} \sim N^{\frac{k-2}{4}}$
Idea: sample the landscape on R points

$$
-\frac{x_{C M}(t+1)-x_{C M}(t)}{\eta}=\frac{1}{R} \sum_{a=1}^{R} \mathbf{g}_{a}=\frac{1}{R} \sum_{a=1}^{R}\left(r \mathbf{g}_{\mathbf{s}}+\mathbf{g}_{\mathbf{n}_{a}}\right)=r \mathbf{g}_{\mathbf{s}}+\mathbf{g}_{\mathbf{n}_{R}} \quad{ }^{\mathrm{r}} \quad \mathbf{g}_{\mathbf{n}_{R}} \sim \frac{\mathbf{g}_{\mathbf{n}_{a}}}{\sqrt{R}}
$$

Troning the landscape

$$
H=-\sum_{\left(i_{1}, \ldots, i_{k}\right)} J_{i_{1}, \ldots, i_{k}} x_{i_{1}} \ldots x_{i_{k}}-r N\left(\sum_{i} \frac{x_{i} v_{i}}{N}\right)^{k}
$$

IT $\quad \lambda_{I T} \sim O(1)$
AMP, GD $\quad \lambda_{A L} \sim N^{\frac{k-2}{2}}$
Tensor Unfolding, SOS $\lambda_{A L} \sim N^{\frac{k-2}{4}}$
Idea: sample the landscape on R points

$-\frac{x_{C M}(t+1)-x_{C M}(t)}{\eta}=\frac{1}{R} \sum_{a=1}^{R} \mathbf{g}_{a}=\frac{1}{R} \sum_{a=1}^{R}\left(r \mathbf{g}_{\mathbf{s}}+\mathbf{g}_{\mathbf{n}_{a}}\right)=r \mathbf{g}_{\mathbf{s}}+\mathbf{g}_{\mathbf{n}_{R}} \quad{ }^{\mathrm{r}} \quad \mathbf{g}_{\mathbf{n}_{R}} \sim \frac{\mathbf{g}_{\mathbf{n}_{a}}}{\sqrt{R}}$

Troning the landscape

$$
H=-\sum_{\left(i_{1}, \ldots, i_{k}\right)} J_{i_{1}, \ldots, i_{k}} x_{i_{1}} \ldots x_{i_{k}}-r N\left(\sum_{i} \frac{x_{i} v_{i}}{N}\right)^{k}
$$

IT $\quad \lambda_{I T} \sim O(1)$
AMP, GD $\quad \lambda_{A L} \sim N^{\frac{k-2}{2}}$
Tensor Unfolding, SOS $\lambda_{A L} \sim N^{\frac{k-2}{4}}$
Idea: sample the landscape on R points

$$
-\frac{x_{C M}(t+1)-x_{C M}(t)}{\eta}=\frac{1}{R} \sum_{a=1}^{R} \mathbf{g}_{a}=\frac{1}{R} \sum_{a=1}^{R}\left(r \mathbf{g}_{\mathbf{s}}+\mathbf{g}_{\mathbf{n}_{a}}\right)=r \mathbf{g}_{\mathbf{s}}+\mathbf{g}_{\mathbf{n}_{R}} \quad{ }^{\mathrm{r}} \quad \mathbf{g}_{\mathbf{n}_{R}} \sim \frac{\mathbf{g}_{\mathbf{n}_{a}}}{\sqrt{R}}
$$

Ironing the landscape

$$
H=-\sum_{\left(i_{1}, \ldots, i_{k}\right)} J_{i_{1}, \ldots, i_{k}} x_{i_{1}} \ldots x_{i_{k}}-r N\left(\sum_{i} \frac{x_{i} v_{i}}{N}\right)^{k}
$$

IT $\quad \lambda_{I T} \sim O(1)$
AMP, GD $\quad \lambda_{A L} \sim N^{\frac{k-2}{2}}$
Tensor Unfolding, SOS $\lambda_{A L} \sim N^{\frac{k-2}{4}}$
Idea: sample the landscape on R points

$-\frac{x_{C M}(t+1)-x_{C M}(t)}{\eta}=\frac{1}{R} \sum_{a=1}^{R} \mathbf{g}_{a}=\frac{1}{R} \sum_{a=1}^{R}\left(r \mathbf{g}_{\mathbf{s}}+\mathbf{g}_{\mathbf{n}_{a}}\right)=r \mathbf{g}_{\mathbf{s}}+\mathbf{g}_{\mathbf{n}_{R}} \quad{ }^{\mathrm{r}} \quad \mathbf{g}_{\mathbf{n}_{R}} \sim \frac{\mathbf{g}_{\mathbf{n}_{a}}}{\sqrt{R}}$
Averaged landscape descent: $\quad \lambda_{A L} \sim N^{\frac{k-2}{4}} \quad$ as good as it can get!

Learning dynamics in rough landscapes

Learning as rough loss/risk/ cost landscapes exploration

Machine Learning as interrupted aging (slowed down by glassy landscape) and diffusion

Tensor PCA: detailed information on landscape structure and accurate prediction of algorithmic transition

Tensor PCA: two strategies (one is very general!) to optimise GD

To which extent are these concepts general (e.g. phase retrieval) and / or applicable to ML? Can we reduce overparametrization, dataset's size, propose more efficient versions of SGD?

Learning dynamics in rough landscapes

Learning as rough loss/risk/ cost landscapes exploration

To which extent are these concepts general (e.g. phase retrieval) and / or applicable to ML? Can we reduce overparametrization, dataset's size, propose more efficient versions of SGD?

Learning dynamics in rough landscapes

Learning as rough loss/risk/ cost landscapes exploration

Tensor PCA: two strategies (one is very general!) to optimise GD

pted aging (slowed down y landscape) and diffusion

Thank you!

To which extent are these concepts general (e.g. phase retrieval) and / or applicable to ML? Can we reduce overparametrization, dataset's size, propose more efficient versions of SGD?
\square

Dynamics, data structure...and Hopfield
Consider the Hopfield model $\quad H=-\sum_{(i, j)}^{N} J_{i j} s_{i} s_{j} \quad J_{i j}=\frac{1}{N} \sum_{\alpha}^{P} \xi_{i}^{\alpha} \xi_{j}^{\alpha}$

Dynamics ... and Hopfield

Consider the Hopfield model $\quad H=-\sum_{(i, j)}^{N} J_{i j} s_{i} s_{j} \quad J_{i j}=\frac{1}{N} \sum_{\alpha}^{P} \xi_{i}^{\alpha} \xi_{j}^{\alpha}$

Dynamics ... and Hopfield

Consider the Hopfield model $\quad H=-\sum_{(i, j)}^{N} J_{i j} s_{i} s_{j} \quad J_{i j}=\frac{1}{N} \sum_{\alpha}^{P} \xi_{i}^{\alpha} \xi_{j}^{\alpha}$

Dynamics, data structure... and Hopfield

Consider the Hopfield model $\quad H=-\sum_{(i, j)}^{N} J_{i j} s_{i} j_{j} \quad J_{i j}=\frac{1}{N} \sum_{\alpha}^{P} \xi_{i}^{\alpha} \xi_{j}^{\alpha}$
Add correlation

$$
\xi_{i}^{\alpha}=\operatorname{sign}\left(\sum_{\mathrm{k}}^{\mathrm{D}} \mathrm{c}_{\mathrm{k}}^{(i, j)} \mathrm{f}_{\mathrm{i}}^{\mathrm{k}}\right)
$$

$$
\alpha_{P}=P / N
$$

Dynamics, data structure... and Hopfield

Negri Lauditi Perugini Lucibello Malatesta arXiv:2303.16880 (2023)
Consider the Hopfield model $\quad H=-\sum_{(i, j)}^{N} J_{i j} s_{i} s_{j} \quad J_{i j}=\frac{1}{N} \sum_{\alpha}^{P} \xi_{i}^{\alpha} \xi_{j}^{\alpha}$
Add correlation

$$
\alpha_{P}=P / N
$$

Dynamics, data structure... and Hopfield

Negri Lauditi Perugini Lucibello Malatesta arXiv:2303.16880 (2023)

Dynamics, data structure... and Hopfield

Negri Lauditi Perugini Lucibello Malatesta arXiv:2303.16880 (2023)
Consider the Hopfield model $\quad H=-\sum_{(i, j)}^{N} J_{i j} s_{i} s_{j} \quad J_{i j}=\frac{1}{N} \sum_{\alpha}^{P} \xi_{i}^{\alpha} \xi_{j}^{\alpha}$

Thank you!
\square

