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Glasses and aging dynamics

9134 F Sciortino and P Tartaglia

The correlation functions in aging show again the two-step relaxation phenomenon.
Similarly to the equilibrium case, the short-time dynamics is rather insensitive to the time tw
elapsed from the crunch. In contrast, the long-time relaxation shows a significant dependence
on tw. The longer tw, the longer the time required to lose the memory of the initial configuration.
As shown in the bottom panel of figure 3 the shape of the correlation function in equilibrium
conditions differs from that under OOE conditions. While the long-time decay of the
equilibrium correlation function can be well described by a stretched exponential, the shape of
the same function during aging is much wider than the equilibrium one and is better described
by a logarithmic decay. A similar observation holds for the OOE condition generated via a
T -jump [35].

Another interesting quantity is the behaviour of the mean square displacement 〈r2〉 as a
function of temperature and of aging time. The behaviour of 〈r2〉 during aging has been studied
previously for short tw and different potentials in references [36,37]. Figure 4 shows the mean
square displacements for the A particles.
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Figure 4. Mean square displacements in equilibrium for different values of T (left column) and
in aging for different waiting times (right column). Both linear–linear and log–log representations
are reported, to highlight the different t-dependences. Time is measured in MD steps.

In equilibrium, in the T -region where a clear separation of short-time and long-time
dynamics is feasible, all curves can be scaled onto a common master curve, the so-called time–
temperature representation. A master curve is produced if data are represented as a function
of log(t/τ (T )), as shown in the left-hand panel of figure 5. In the OOE conditions a similar
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Machine Learning vs glass quenches

Learning (training): minimise the Loss function from random initial condition

distance between output and correct answer, i.e.

Loss function

ṙ↵,i(t) = �r↵,iH + ⌘↵,i(t)

Quenches : rapid coolings from high temperature, 
i.e. almost random initial configuration

Stochastic Gradient Descent

Relaxation dynamics

How is learning dynamics? How the loss landscape?
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Supervised	Learning:	DNN

The	input-output	function	of	DNN	is	highly	non-linear	and	hierarchical

Toy model: 1 hidden layer, ReLU, sigmoid in output, MSE as a loss

Fully connected: 3 hidden layers, ReLU, log likelihood 

Small Net: 2 hidden convolutional layers, 
                   2 fully connected ReLU, log likelihood

ResNet18: 18 hidden convolutional layers

MNIST, CFAR-10, CFAR-100

Loss-Functions	DNNs

Comparing Dynamics: Deep Neural Networks versus Glassy Systems
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(a) Toy Model on CIFAR-10, B = 100, ↵ = 0.1.
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(b) Fully Connected on MNIST, B = 128, ↵ = 0.01.
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(c) Small Net on CIFAR-10, B = 100, ↵ = 0.01.
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(d) ResNet-18 on CIFAR-100. B = 64, ↵ = 0.01.

Figure 4. Mean square displacements rescaled by the noise on the loss’s gradient. Since the behavior of the curves differ in different
phases, we show the smaller tw < t2 on the top set, and the larger tw > t2 on the lower set. For reference, some tw appear in both sets.
The black segment on the bottom sets represents a slope ⇠ t.

termediate plateau13, contrary to what found in Fig. 1(b).
The form of �(tw, tw + t) is instead the one characteristic
of diffusion (the curves �/D would be straight lines in a
log-log plot only if D didn’t depend on tw).

Both the aging and the diffusive regimes are present and
qualitatively similar in all the analyzed networks. The
fact that a slow aging dynamics is also present in model
A (Toy Model), that supposedly has no barriers (see Sec. 3),
strengthens the conclusion that the dynamics slows down
because of the emergence of flat directions that ultimately
lead to diffusion at or close to the bottom of the landscape.
A deeper analysis of the finer properties of the diffusive
regime will be studied in a forthcoming publication.

13The shape of the mean-square displacements is different for
different networks, possibly indicating that the manifolds corre-
sponding to the bottom of the landscape have different geometric
characterization.

4. Discussion

In this work we have analyzed the training dynamics
of DNNs by methods developed in physics for out-of-
equilibrium disordered systems. We have studied the time
dependence of the loss value and the mean-square displace-
ments of the weights and compared them to their counter-
parts in physical systems, in particular the 3-spin spherical
spin-glass. The analysis of the time-dependence of the loss
function and the mean square displacement indicates that
there are at least three time regimes in the training process:
one corresponding to an initial exploration of the energy/loss
landscape, followed by a decrease of the loss, in which the
system displays aging dynamics, and a final regime in which
the dynamics appears to be almost stationary and diffusive.
Barrier crossing does not seem to play any role. The slowing
down can be instead traced back to an increasingly large
amount of flat directions that become available to the system

Baity-Jesi, Sagun, Geiger, Spiegler, Ben Arous, Cammarota, LeCun, Wyart, Biroli PMLR 2018
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Supervised	Learning:	DNN

The	input-output	function	of	DNN	is	highly	non-linear	and	hierarchical

Toy model: 1 hidden layer, ReLU, sigmoid in output, MSE as a loss

Fully connected: 3 hidden layers, ReLU, log likelihood 

Small Net: 2 hidden convolutional layers, 
                   2 fully connected ReLU, log likelihood

ResNet18: 18 hidden convolutional layers

MNIST, CFAR-10, CFAR-100

Loss-Functions	DNNs

Comparing Dynamics: Deep Neural Networks versus Glassy Systems
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(b) Fully Connected on MNIST, B = 128, ↵ = 0.01.
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(c) Small Net on CIFAR-10, B = 100, ↵ = 0.01.
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(d) ResNet-18 on CIFAR-100. B = 64, ↵ = 0.01.

Figure 4. Mean square displacements rescaled by the noise on the loss’s gradient. Since the behavior of the curves differ in different
phases, we show the smaller tw < t2 on the top set, and the larger tw > t2 on the lower set. For reference, some tw appear in both sets.
The black segment on the bottom sets represents a slope ⇠ t.

termediate plateau13, contrary to what found in Fig. 1(b).
The form of �(tw, tw + t) is instead the one characteristic
of diffusion (the curves �/D would be straight lines in a
log-log plot only if D didn’t depend on tw).

Both the aging and the diffusive regimes are present and
qualitatively similar in all the analyzed networks. The
fact that a slow aging dynamics is also present in model
A (Toy Model), that supposedly has no barriers (see Sec. 3),
strengthens the conclusion that the dynamics slows down
because of the emergence of flat directions that ultimately
lead to diffusion at or close to the bottom of the landscape.
A deeper analysis of the finer properties of the diffusive
regime will be studied in a forthcoming publication.

13The shape of the mean-square displacements is different for
different networks, possibly indicating that the manifolds corre-
sponding to the bottom of the landscape have different geometric
characterization.

4. Discussion

In this work we have analyzed the training dynamics
of DNNs by methods developed in physics for out-of-
equilibrium disordered systems. We have studied the time
dependence of the loss value and the mean-square displace-
ments of the weights and compared them to their counter-
parts in physical systems, in particular the 3-spin spherical
spin-glass. The analysis of the time-dependence of the loss
function and the mean square displacement indicates that
there are at least three time regimes in the training process:
one corresponding to an initial exploration of the energy/loss
landscape, followed by a decrease of the loss, in which the
system displays aging dynamics, and a final regime in which
the dynamics appears to be almost stationary and diffusive.
Barrier crossing does not seem to play any role. The slowing
down can be instead traced back to an increasingly large
amount of flat directions that become available to the system

Flat bottom of the Loss landscape!

Baity-Jesi, Sagun, Geiger, Spiegler, Ben Arous, Cammarota, LeCun, Wyart, Biroli PMLR 2018
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Toy model: 1 hidden layer (MUCH SMALLER), ReLU, sigmoid in output, MSE as a loss
Comparing Dynamics: Deep Neural Networks versus Glassy Systems
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Figure 5. On 5(a) train/test loss and accuracy as a function of log(t) in a modified version of model A (Toy Model) with only 10 hidden
neurons on CIFAR-10. The batch size is B = 100, and the learning rate is ↵ = 0.1. On 5(b), mean square displacement for the same
model.

during its descent in the loss landscape.

The non-existence of such barrier crossings has been already
proposed in the machine learning literature and some indi-
rect evidences where obtained in numerical works. In (Free-
man & Bruna, 2016), it is shown that in certain networks
one can connect two different solutions by a path in the
weight space in such a way that the loss doesn’t increase
by much, and the amount of increase diminishes as the size
of the network grows. In a related perspective on the loss
surface, (Sagun et al., 2016) and (Sagun et al., 2017) demon-
strate separate cases where the straight line between two
weight configurations at the bottom of the loss landscape
evaluates to the same loss value, in other words there are no
barriers between these two points.

Overall, our study shows that there are interesting analo-
gies between DNNs and glassy mean-field models but also
important differences: in both cases slow evolution along
almost flat directions is a key ingredient to understand the
dynamics, however in DNNs the shape of �(tw, tw + t) at
large tw combined with the fact that the system is able to
reach the bottom of the landscape suggests that the statisti-
cal properties of the loss landscape are not the same even
qualitatively. A possible reason for this difference is the
over-parametrization of DNNs, which, pictorially, stretches
the rough landscape and makes its dynamical exploration
easier. Indeed, the dynamics of glassy systems was recently
shown to be greatly accelerated by adding continuous pa-
rameters (Ninarello et al., 2017). As explained in (Brito
et al., 2018) this flattens the landscape and allows to reach
very low energy states without jumping over barriers.

In order to test this idea, we have reduced substantially the
number of nodes for model A keeping the same dataset used

for the previous figures. In this case the loss function does
not reach zero, actually it seems to tend asymptotically to
a higher value, see Figure 5(a). Even more striking is the
behavior of the mean-square displacement, which is now
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On the basis of these results, we conjecture the existence of
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corresponding to over-parametrized networks, in which bad
local minima do not play any role, dynamics is governed by
a massive amount of flat directions, and learning is achieved;
(ii) a hard phase corresponding to under-parametrized net-
works, in which the landscape is rough, dynamics is glassy
and the network does not learn well. Whether learning is
possible in this case but it would take a huge amount of time
to find the good minima is an interesting question.

This scenario has tantalizing similarities with the one found
in several combinatorial optimization problems in which
easy, hard and impossible algorithmic phases have been
found, see e.g. (Monasson et al., 1999; Mézard et al.,
2002; Krzakała et al., 2007; Zdeborová & Krzakala, 2016;
Achlioptas & Coja-Oghlan, 2008). When degrees of free-
dom are continuous, the transition between these phases can
be associated with the emergence of many flat directions
in the energy landscape, a well-known example is the jam-
ming transition of disordered solids (Wyart, 2005; Liu et al.,
2010). A detailed investigation of this scenario for DNNs is
ongoing and will be presented in a future publication.

Aging on infinitely long timescales

Not getting to the bottom of the landscape!

Eth

EgsRough bottom of the Loss landscape

Baity-Jesi, Sagun, Geiger, Spiegler, Ben Arous, Cammarota, LeCun, Wyart, Biroli PMLR 2018
Aging is restored for under-parametrised NN!

Dr. Chiara Cammarota12 September, 2023



Dr. Chiara Cammarota

Three intertwined elements in machine learning: 
training algorithm
data structure 
network structure 

How SGD works in state of the art machine learning? (path)

How all this can be improved? 

Many people (Franz Goldt Saad Saxe Urbani etc)

Milder overparametrization
Optimised algorithm (mostly SGD)
Improved use of the data

How generalisation is achieved? (outcome)
Many people (Biroli Montanari Zecchina etc)

cit. Zdeborova

Much more on Machine Learning 

12 September, 2023



From landscape structure to algorithmic predictions..and optimisation

Inference



Dr. Chiara Cammarota

An example of signal reconstruction

MATRIX PCA, TENSOR PCA, MIXED MODELS v

x

12 September, 2023



Dr. Chiara Cammarota

An example of signal reconstruction

MATRIX PCA, TENSOR PCA, MIXED MODELS

Estimation of rank-one k-tensor from a noisy channel(s)

SignalCorrupting noiseObservation

Maximum likelihood estimator: minimum squared distance

Hk = − ∑
(i1,…,ik)

(Ti1,…,ik − xi1…xik)
2 ∝ − ∑

(i1,…,ik)
Ji1,…,ikxi1…xik − rN (∑

i

xivi

N )
k

+ const

with  and  signal to noise ratioJi1,…,ik ∝ Wi1,…,ik r

Ti1,…,ik = Wi1,…,ik + vi1…vik

v

x

..also MIXED matrix / tensor models
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Figure 1: The figure summarizes the main results of this paper for the spiked matrix-tensor model with p = 3
(left) and p = 4 (right). As a function of the tensor-noise parameter �p on the x-axes, we plot the values of
1/�2 above which the following happens (from above): Above �triv

2 (the dashed purple line) the landscape of
the problem becomes trivial in the sence that all spurious local minima disappear. Above �GF

2 (the dotted blue
line) and �ML�AMP

2 (the full cyan line), Eq. (32), the gradient flow and the ML-AMP algorithm, respectively,
converge close to the ground truth signal in time linear in the input size. While the results for Kac-Rice and
ML-AMP are given in a closed form, the ones for GF are obtained by extrapolating a convergence time obtained
by numerical solution of integro-di↵erential equations that describe large size behaviour of the GF. We note
that all the three lines �triv

2 , �GF
2 , and �ML�AMP

2 converge to 1 as �p ! 1, consistently with the spiked
matrix model. These three lines, related to minimization of the landscape, and their mutual positions, are
the main result of this paper. The colors in the background, separated by the black dashed-dotted lines, show
for comparison the phase diagram for the Bayes-optimal inference, related to the ability to approximate the
marginals of the corresponding posterior probability distribution, and are taken from [1]. In the red region
obtaining a positive correlation with the signal in information-theoretically impossible. In the green region it is
possible to obtain optimal correlation with the signal using the Bayes-optimal AMP (BO-AMP). And in the
orange the region the BO-AMP is not able to reach the Bayes-optimal performance.

then obtain two types of observations about the signal, a symmetric matrix Y , and an order p symmetric tensor
T , that given the signal x⇤ are obtained as

Yij =
x⇤ix

⇤
jp

N
+ ⇠ij , (1)

Ti1,...,ip =

p
(p� 1)!

N (p�1)/2
x⇤i1 . . . x

⇤
ip + ⇠i1,...,ip (2)

for 1  i < j  N and 1  i1 < · · · < ip  N , using and symmetries to obtain the other non-diagonal
components. Here ⇠ij and ⇠i1,...,ip are for each i < j and each i1 < · · · < ip independent Gaussian random
numbers of zero mean and variance �2 and �p, respectively.

The goal in this spiked matrix-tensor inference problem is to estimate the signal x⇤ from the knowledge
of the matrix Y and tensor T . If only the matrix was present, this model reduces to well known model of
low-rank perturbation of a random symmetric matrix, closely related to the spiked covariance model [15]. If on
the contrary only the tensor is observed then the above model reduces to the spiked tensor model as introduced
in [16] and studies in a range of subsequent papers.

In this paper we study the matrix-tensor model where the two observations are combined. Our motivation
is similar to the one exposed in [1], that is, we aim to access a regime in which it is algorithmically tractable
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Figure 4: Right panel: energy as a function of time for the set of parameters indicated by small circles in Fig. 2.
The horizontal dotted lines correspond to value of the threshold energy ‘th, as derived both from the Kac-Rice
approach in Appendix Sec. A.2.3 and from the large time behaviour of the dynamics in Appendix Sec. B.2.6.
Left panel: Eigenvalue distribution of the Hessian of the threshold states for the same set of parameters. When
1/�2 becomes smaller than 2 an isolated eigenvalue appears; it has been highlighted using vertical arrows.
Concomitantly, the energy as a function of time first approaches the plateau and eventually departs from it and
reaches the energy of the global minimum.

spiked matrix-tensor model [20,21] the above quantities satisfy:
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with initial conditions C(t, t) = 1 ’t and R(t, t
Õ) = 0 for all t < t

Õ and limtÕæt≠ R(t, t
Õ) = 1 ’t. The additional

function µ(t), and its associated equation, are due to the spherical constraint; µ(t) plays the role of a Lagrange
multiplier and guarantees that the solution of the previous equations is such that C(t, t) = 1. The derivation of
these equations can be found in [21] and in the SM Sec. B. It is obtained using heuristic theoretical physics
approach and can be very plausibly made fully rigorous generalising the work of [26,31].

This set of equations can be solved numerically as described in [21]. The numerical estimation of the
algorithmic threshold of gradient-flow, reproduced in Fig. 2, was obtained in [20]. We have also directly simulated
the gradient flow Eq. (4) and compare the result to the one obtained from solving Eqs. (8-11). As shown in the
SM Sec. C, for N = 65535, we find a very good agreement even for this large yet finite size.

Surfing on saddles: Armed with the dynamical equations, we now confirm the prediction of the threshold
(5) based on the Kac-Rice-type of landscape analysis. In the SM we check that the minima trapping the dynamics
are indeed the marginally stable ones (t = 2), see Figs. 7 and 8 in the SM, and we show the energy can be
expressed in terms of C, R and m. In the right panel of Fig. 4 we then plot the energy as a function of time
obtained from the numerical solution of Eqs. (8-11) for 1/�2 = 1.5, 1.9, 2.3, 2.7 and �p = 1 (same points and
colour code of Figs. 2 and 3). For the two smaller values of 1/�2 the energy converges to a plateau value at ‘th
(dotted line), whereas for 1/�2 = 2.3, 2.7 the energy plateaus close to ‘th but then eventually drifts away and
reaches a lower value, corresponding to the global minimum correlated with the signal. This behaviour can be
understood in terms of the spectral properties of the Hessian (6) of the minima trapping the dynamics. In the left
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approach in Appendix Sec. A.2.3 and from the large time behaviour of the dynamics in Appendix Sec. B.2.6.
Left panel: Eigenvalue distribution of the Hessian of the threshold states for the same set of parameters. When
1/�2 becomes smaller than 2 an isolated eigenvalue appears; it has been highlighted using vertical arrows.
Concomitantly, the energy as a function of time first approaches the plateau and eventually departs from it and
reaches the energy of the global minimum.

spiked matrix-tensor model [20,21] the above quantities satisfy:

ˆ

ˆt
C(t, t

Õ) = ≠µ(t) C(t, t
Õ) + Q

Õ(m(t))m(tÕ) +
⁄ t

0
R(t, t

ÕÕ)QÕÕ(C(t, t
ÕÕ))C(tÕ

, t
ÕÕ)dt

ÕÕ

+
⁄ tÕ

0
R(tÕ

, t
ÕÕ)QÕ(C(t, t

ÕÕ))dt
ÕÕ

,

(8)

ˆ

ˆt
R(t, t

Õ) = ≠µ(t) R(t, t
Õ) +

⁄ t

tÕ
R(t, t

ÕÕ)QÕÕ(C(t, t
ÕÕ))R(tÕÕ

, t
Õ)dt

ÕÕ
, (9)

d

dt
m(t) = ≠µ(t) m(t) + Q

Õ(m(t)) +
⁄ t

0
R(t, t

ÕÕ)m(tÕÕ)QÕÕ(C(t, t
ÕÕ))dt

ÕÕ
, (10)

µ(t) = Q
Õ(m(t))m(t) +

⁄ t

0
R(t, t

ÕÕ)
#
Q

Õ(C(t, t
ÕÕ)) + Q

ÕÕ(C(t, t
ÕÕ)) C(t, t

ÕÕ)
$
dt

ÕÕ
, (11)

with initial conditions C(t, t) = 1 ’t and R(t, t
Õ) = 0 for all t < t

Õ and limtÕæt≠ R(t, t
Õ) = 1 ’t. The additional

function µ(t), and its associated equation, are due to the spherical constraint; µ(t) plays the role of a Lagrange
multiplier and guarantees that the solution of the previous equations is such that C(t, t) = 1. The derivation of
these equations can be found in [21] and in the SM Sec. B. It is obtained using heuristic theoretical physics
approach and can be very plausibly made fully rigorous generalising the work of [26,31].

This set of equations can be solved numerically as described in [21]. The numerical estimation of the
algorithmic threshold of gradient-flow, reproduced in Fig. 2, was obtained in [20]. We have also directly simulated
the gradient flow Eq. (4) and compare the result to the one obtained from solving Eqs. (8-11). As shown in the
SM Sec. C, for N = 65535, we find a very good agreement even for this large yet finite size.

Surfing on saddles: Armed with the dynamical equations, we now confirm the prediction of the threshold
(5) based on the Kac-Rice-type of landscape analysis. In the SM we check that the minima trapping the dynamics
are indeed the marginally stable ones (t = 2), see Figs. 7 and 8 in the SM, and we show the energy can be
expressed in terms of C, R and m. In the right panel of Fig. 4 we then plot the energy as a function of time
obtained from the numerical solution of Eqs. (8-11) for 1/�2 = 1.5, 1.9, 2.3, 2.7 and �p = 1 (same points and
colour code of Figs. 2 and 3). For the two smaller values of 1/�2 the energy converges to a plateau value at ‘th
(dotted line), whereas for 1/�2 = 2.3, 2.7 the energy plateaus close to ‘th but then eventually drifts away and
reaches a lower value, corresponding to the global minimum correlated with the signal. This behaviour can be
understood in terms of the spectral properties of the Hessian (6) of the minima trapping the dynamics. In the left
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Fig. 5. Behaviour of the correlation with the signal in Langevin algorithm where the
tensor-related temperature Tp is annealed as Tp(t) = 1 + C

�p
e≠t/·ann with

C = 100 in the Langevin-hard regime with �2 = 0.70, �p = 0.10. We show
the behavior for several rates · (solid lines) and compare to the quenched Langevin
algorithm (dashed line close to zero), and to the value reached by AMP for the full
model (upper dotted line) and for the pure matrix model (lower dotted line). We see
that unless the annealing is very fast, it reaches the AMP value. When the annealing
is very slow it takes time to reach the AMP value.

vergence to equilibrium. This is particularly striking given
that for AMP it has been proven in (7) that mismatching the
parameters can never improve the performance.

8. Perspectives

In this work we have investigated the performances of the
Langevin algorithm considered as a tool to sample the posterior
measure in the spiked matrix-tensor model. We have shown
that the Langevin algorithm fails to find the signal in part of
the AMP-easy region. Our analysis is based on the Langevin
State Evolution equations that describe the evolution of the
algorithm in the large size limit.

In this work we managed to find the landscape-annealing
protocol under which the Langevin algorithm is able to match
the performance of AMP by relying on knowledge about gen-
erative model. It would be an interesting direction for future
work to investigate whether the performance of the Langevin
algorithm can be improved with some model-blind manner.

While we studied here the spiked matrix-tensor model, we
expect that our findings are universal because they are due
to the glassiness of the hard phase and therefore should apply
to any local sampling dynamics, e.g. to Monte Carlo Markov
chains. An interesting extension of this work would investigate
algorithms closer to stochastic gradient descent and models
closer to current neural network architectures.
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the global maximizer of the free entropy (5), and
m! > mAMP ¼ 0.

(iii) Impossible, in red, for Δ2 > 1 and high
Δp > ΔIT

p ðΔ2Þ: The fixed point of the state evolution
(6) is the global maximizer of the free entropy (5),
and m! ¼ mAMP ¼ 0.

For the 2þ p-spin model with p > 3, the phase diagram
is slightly richer and is presented in Appendix D 4.

IV. LANGEVIN ALGORITHM AND ITS ANALYSIS

We now turn to the core of the paper and the analysis of
the Langevin algorithm. In statistics, the most common way
to compute the Bayes-optimal estimator (3) is to attempt to
sample the posterior distribution (2) and to use several
independent samples to compute the expectation in Eq. (3).
In order to do perform this process, one needs to set up a
stochastic dynamics on x that has a stationary measure
at long times given by the posterior measure (2). The
Langevin algorithm is one possibility (others include,
notably, the Markov chain Monte Carlo method). The
common bottleneck is that the time needed to achieve
stationarity can, in general, be exponential in the system
size, in which case the algorithm is practically useless.
However, this result is not always the case, and there are
regions in parameter space where one can expect that the
relaxation to the posterior measure happens on tractable

timescales. Therefore, it is crucial to understand where this
happens and what the associated relaxation timescales are.
The Langevin algorithm on the hypersphere with the

Hamiltonian given by Eq. (4) reads

_xiðtÞ ¼ −μðtÞxiðtÞ −
∂H
∂xi þ ηiðtÞ; ð7Þ

where ηiðtÞ is a zero mean noise term, with
hηiðtÞηjðt0Þi ¼ 2δijδðt − t0Þ, where the average h·i is with
respect to the realizations of the noise. The Lagrange
multiplier μðtÞ is chosen in such a way that the dynamics
remains on the hypersphere. In the large-N limit, one finds
μðtÞ ¼ 1–2H2ðtÞ − pHpðtÞ, where the H2ðtÞ is the first
term from Eq. (4) evaluated at xðtÞ, and HpðtÞ is the value
of the second term from Eq. (4).
The presented spiked matrix-tensor model falls into the

particular class of spherical 2þ p-spin glasses [41,42] for
which the performance of the Langevin algorithm can be
tracked exactly in the large-N limit via a set of integro-
partial differential equations [26,27], previously dubbed
CHSCK. We call this generalized version of the CHSCK
equations the Langevin state evolution (LSE) equations, in
analogy to the state evolution of AMP.
In order to write the LSE equations, we define three

dynamical correlation functions,

CNðt; t0Þ≡ 1

N

XN

i¼1

xiðtÞxiðt0Þ; ð8Þ

C̄NðtÞ≡ 1

N

XN

i¼1

xiðtÞx!i ; ð9Þ

RNðt; t0Þ≡ 1

N

XN

i¼1

∂xiðtÞ=∂hiðt0Þjhi¼0; ð10Þ

where hi is a pointwise external field applied at time t0 to
the Hamiltonian as Hþ

P
i hixi. We note that the corre-

lation functions defined above depend on the realization
of the thermal history [i.e., of the noise ηðtÞ] and on the
disorder (here, the matrix Y and tensor T). However, in the
large-N limit, they all concentrate around their averages.
Thus, we define Cðt; t0Þ ¼ limN→∞EY;ThCNðt; t0Þiη and
analogously for C̄ðtÞ and Rðt; t0Þ. Standard field theoretical
methods [43] or dynamical cavity method arguments [44]
can then be used to obtain a closed set of integrodifferential
equations for the averaged dynamical correlation functions,
describing the average global evolution of the system under
the Langevin algorithm. The resulting LSE equations are
(see Appendix C for a complete derivation)

FIG. 1. Phase diagram of the spiked 2þ 3-spin model (the
matrix and order-3 tensor are observed). In the easy (green)
region, the AMP achieves an optimal error smaller than the
random pick from the prior. In the impossible region (red), the
optimal error is as bad as the random pick from the prior, and
the AMP achieves it as well. In the hard region (orange), the
optimal error is low, but the AMP does not find an estimator
better than the random pick from the prior. In the case of the
Langevin algorithm, the performance is strictly worse than that
for the AMP in the sense that the hard region increases up to the
line 1=Δ!

2 ¼ maxð1;
ffiffiffiffiffiffiffiffiffiffiffi
Δ3=2

p
Þ, depicted by green dots. The green

circles are obtained by numerical extrapolation of the Langevin
state evolution equations.
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Fig. 5. Behaviour of the correlation with the signal in Langevin algorithm where the
tensor-related temperature Tp is annealed as Tp(t) = 1 + C

�p
e≠t/·ann with

C = 100 in the Langevin-hard regime with �2 = 0.70, �p = 0.10. We show
the behavior for several rates · (solid lines) and compare to the quenched Langevin
algorithm (dashed line close to zero), and to the value reached by AMP for the full
model (upper dotted line) and for the pure matrix model (lower dotted line). We see
that unless the annealing is very fast, it reaches the AMP value. When the annealing
is very slow it takes time to reach the AMP value.

vergence to equilibrium. This is particularly striking given
that for AMP it has been proven in (7) that mismatching the
parameters can never improve the performance.

8. Perspectives

In this work we have investigated the performances of the
Langevin algorithm considered as a tool to sample the posterior
measure in the spiked matrix-tensor model. We have shown
that the Langevin algorithm fails to find the signal in part of
the AMP-easy region. Our analysis is based on the Langevin
State Evolution equations that describe the evolution of the
algorithm in the large size limit.

In this work we managed to find the landscape-annealing
protocol under which the Langevin algorithm is able to match
the performance of AMP by relying on knowledge about gen-
erative model. It would be an interesting direction for future
work to investigate whether the performance of the Langevin
algorithm can be improved with some model-blind manner.

While we studied here the spiked matrix-tensor model, we
expect that our findings are universal because they are due
to the glassiness of the hard phase and therefore should apply
to any local sampling dynamics, e.g. to Monte Carlo Markov
chains. An interesting extension of this work would investigate
algorithms closer to stochastic gradient descent and models
closer to current neural network architectures.
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the global maximizer of the free entropy (5), and
m! > mAMP ¼ 0.

(iii) Impossible, in red, for Δ2 > 1 and high
Δp > ΔIT

p ðΔ2Þ: The fixed point of the state evolution
(6) is the global maximizer of the free entropy (5),
and m! ¼ mAMP ¼ 0.

For the 2þ p-spin model with p > 3, the phase diagram
is slightly richer and is presented in Appendix D 4.

IV. LANGEVIN ALGORITHM AND ITS ANALYSIS

We now turn to the core of the paper and the analysis of
the Langevin algorithm. In statistics, the most common way
to compute the Bayes-optimal estimator (3) is to attempt to
sample the posterior distribution (2) and to use several
independent samples to compute the expectation in Eq. (3).
In order to do perform this process, one needs to set up a
stochastic dynamics on x that has a stationary measure
at long times given by the posterior measure (2). The
Langevin algorithm is one possibility (others include,
notably, the Markov chain Monte Carlo method). The
common bottleneck is that the time needed to achieve
stationarity can, in general, be exponential in the system
size, in which case the algorithm is practically useless.
However, this result is not always the case, and there are
regions in parameter space where one can expect that the
relaxation to the posterior measure happens on tractable

timescales. Therefore, it is crucial to understand where this
happens and what the associated relaxation timescales are.
The Langevin algorithm on the hypersphere with the

Hamiltonian given by Eq. (4) reads

_xiðtÞ ¼ −μðtÞxiðtÞ −
∂H
∂xi þ ηiðtÞ; ð7Þ

where ηiðtÞ is a zero mean noise term, with
hηiðtÞηjðt0Þi ¼ 2δijδðt − t0Þ, where the average h·i is with
respect to the realizations of the noise. The Lagrange
multiplier μðtÞ is chosen in such a way that the dynamics
remains on the hypersphere. In the large-N limit, one finds
μðtÞ ¼ 1–2H2ðtÞ − pHpðtÞ, where the H2ðtÞ is the first
term from Eq. (4) evaluated at xðtÞ, and HpðtÞ is the value
of the second term from Eq. (4).
The presented spiked matrix-tensor model falls into the

particular class of spherical 2þ p-spin glasses [41,42] for
which the performance of the Langevin algorithm can be
tracked exactly in the large-N limit via a set of integro-
partial differential equations [26,27], previously dubbed
CHSCK. We call this generalized version of the CHSCK
equations the Langevin state evolution (LSE) equations, in
analogy to the state evolution of AMP.
In order to write the LSE equations, we define three

dynamical correlation functions,

CNðt; t0Þ≡ 1

N

XN

i¼1

xiðtÞxiðt0Þ; ð8Þ

C̄NðtÞ≡ 1

N

XN

i¼1

xiðtÞx!i ; ð9Þ

RNðt; t0Þ≡ 1

N

XN

i¼1

∂xiðtÞ=∂hiðt0Þjhi¼0; ð10Þ

where hi is a pointwise external field applied at time t0 to
the Hamiltonian as Hþ

P
i hixi. We note that the corre-

lation functions defined above depend on the realization
of the thermal history [i.e., of the noise ηðtÞ] and on the
disorder (here, the matrix Y and tensor T). However, in the
large-N limit, they all concentrate around their averages.
Thus, we define Cðt; t0Þ ¼ limN→∞EY;ThCNðt; t0Þiη and
analogously for C̄ðtÞ and Rðt; t0Þ. Standard field theoretical
methods [43] or dynamical cavity method arguments [44]
can then be used to obtain a closed set of integrodifferential
equations for the averaged dynamical correlation functions,
describing the average global evolution of the system under
the Langevin algorithm. The resulting LSE equations are
(see Appendix C for a complete derivation)

FIG. 1. Phase diagram of the spiked 2þ 3-spin model (the
matrix and order-3 tensor are observed). In the easy (green)
region, the AMP achieves an optimal error smaller than the
random pick from the prior. In the impossible region (red), the
optimal error is as bad as the random pick from the prior, and
the AMP achieves it as well. In the hard region (orange), the
optimal error is low, but the AMP does not find an estimator
better than the random pick from the prior. In the case of the
Langevin algorithm, the performance is strictly worse than that
for the AMP in the sense that the hard region increases up to the
line 1=Δ!

2 ¼ maxð1;
ffiffiffiffiffiffiffiffiffiffiffi
Δ3=2

p
Þ, depicted by green dots. The green

circles are obtained by numerical extrapolation of the Langevin
state evolution equations.
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Fig. 5. Behaviour of the correlation with the signal in Langevin algorithm where the
tensor-related temperature Tp is annealed as Tp(t) = 1 + C

�p
e≠t/·ann with

C = 100 in the Langevin-hard regime with �2 = 0.70, �p = 0.10. We show
the behavior for several rates · (solid lines) and compare to the quenched Langevin
algorithm (dashed line close to zero), and to the value reached by AMP for the full
model (upper dotted line) and for the pure matrix model (lower dotted line). We see
that unless the annealing is very fast, it reaches the AMP value. When the annealing
is very slow it takes time to reach the AMP value.

vergence to equilibrium. This is particularly striking given
that for AMP it has been proven in (7) that mismatching the
parameters can never improve the performance.

8. Perspectives

In this work we have investigated the performances of the
Langevin algorithm considered as a tool to sample the posterior
measure in the spiked matrix-tensor model. We have shown
that the Langevin algorithm fails to find the signal in part of
the AMP-easy region. Our analysis is based on the Langevin
State Evolution equations that describe the evolution of the
algorithm in the large size limit.

In this work we managed to find the landscape-annealing
protocol under which the Langevin algorithm is able to match
the performance of AMP by relying on knowledge about gen-
erative model. It would be an interesting direction for future
work to investigate whether the performance of the Langevin
algorithm can be improved with some model-blind manner.

While we studied here the spiked matrix-tensor model, we
expect that our findings are universal because they are due
to the glassiness of the hard phase and therefore should apply
to any local sampling dynamics, e.g. to Monte Carlo Markov
chains. An interesting extension of this work would investigate
algorithms closer to stochastic gradient descent and models
closer to current neural network architectures.
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the global maximizer of the free entropy (5), and
m! > mAMP ¼ 0.

(iii) Impossible, in red, for Δ2 > 1 and high
Δp > ΔIT

p ðΔ2Þ: The fixed point of the state evolution
(6) is the global maximizer of the free entropy (5),
and m! ¼ mAMP ¼ 0.

For the 2þ p-spin model with p > 3, the phase diagram
is slightly richer and is presented in Appendix D 4.

IV. LANGEVIN ALGORITHM AND ITS ANALYSIS

We now turn to the core of the paper and the analysis of
the Langevin algorithm. In statistics, the most common way
to compute the Bayes-optimal estimator (3) is to attempt to
sample the posterior distribution (2) and to use several
independent samples to compute the expectation in Eq. (3).
In order to do perform this process, one needs to set up a
stochastic dynamics on x that has a stationary measure
at long times given by the posterior measure (2). The
Langevin algorithm is one possibility (others include,
notably, the Markov chain Monte Carlo method). The
common bottleneck is that the time needed to achieve
stationarity can, in general, be exponential in the system
size, in which case the algorithm is practically useless.
However, this result is not always the case, and there are
regions in parameter space where one can expect that the
relaxation to the posterior measure happens on tractable

timescales. Therefore, it is crucial to understand where this
happens and what the associated relaxation timescales are.
The Langevin algorithm on the hypersphere with the

Hamiltonian given by Eq. (4) reads

_xiðtÞ ¼ −μðtÞxiðtÞ −
∂H
∂xi þ ηiðtÞ; ð7Þ

where ηiðtÞ is a zero mean noise term, with
hηiðtÞηjðt0Þi ¼ 2δijδðt − t0Þ, where the average h·i is with
respect to the realizations of the noise. The Lagrange
multiplier μðtÞ is chosen in such a way that the dynamics
remains on the hypersphere. In the large-N limit, one finds
μðtÞ ¼ 1–2H2ðtÞ − pHpðtÞ, where the H2ðtÞ is the first
term from Eq. (4) evaluated at xðtÞ, and HpðtÞ is the value
of the second term from Eq. (4).
The presented spiked matrix-tensor model falls into the

particular class of spherical 2þ p-spin glasses [41,42] for
which the performance of the Langevin algorithm can be
tracked exactly in the large-N limit via a set of integro-
partial differential equations [26,27], previously dubbed
CHSCK. We call this generalized version of the CHSCK
equations the Langevin state evolution (LSE) equations, in
analogy to the state evolution of AMP.
In order to write the LSE equations, we define three

dynamical correlation functions,

CNðt; t0Þ≡ 1

N

XN

i¼1

xiðtÞxiðt0Þ; ð8Þ

C̄NðtÞ≡ 1

N

XN

i¼1

xiðtÞx!i ; ð9Þ

RNðt; t0Þ≡ 1

N

XN

i¼1

∂xiðtÞ=∂hiðt0Þjhi¼0; ð10Þ

where hi is a pointwise external field applied at time t0 to
the Hamiltonian as Hþ

P
i hixi. We note that the corre-

lation functions defined above depend on the realization
of the thermal history [i.e., of the noise ηðtÞ] and on the
disorder (here, the matrix Y and tensor T). However, in the
large-N limit, they all concentrate around their averages.
Thus, we define Cðt; t0Þ ¼ limN→∞EY;ThCNðt; t0Þiη and
analogously for C̄ðtÞ and Rðt; t0Þ. Standard field theoretical
methods [43] or dynamical cavity method arguments [44]
can then be used to obtain a closed set of integrodifferential
equations for the averaged dynamical correlation functions,
describing the average global evolution of the system under
the Langevin algorithm. The resulting LSE equations are
(see Appendix C for a complete derivation)

FIG. 1. Phase diagram of the spiked 2þ 3-spin model (the
matrix and order-3 tensor are observed). In the easy (green)
region, the AMP achieves an optimal error smaller than the
random pick from the prior. In the impossible region (red), the
optimal error is as bad as the random pick from the prior, and
the AMP achieves it as well. In the hard region (orange), the
optimal error is low, but the AMP does not find an estimator
better than the random pick from the prior. In the case of the
Langevin algorithm, the performance is strictly worse than that
for the AMP in the sense that the hard region increases up to the
line 1=Δ!

2 ¼ maxð1;
ffiffiffiffiffiffiffiffiffiffiffi
Δ3=2

p
Þ, depicted by green dots. The green

circles are obtained by numerical extrapolation of the Langevin
state evolution equations.
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Fig. 5. Behaviour of the correlation with the signal in Langevin algorithm where the
tensor-related temperature Tp is annealed as Tp(t) = 1 + C

�p
e≠t/·ann with

C = 100 in the Langevin-hard regime with �2 = 0.70, �p = 0.10. We show
the behavior for several rates · (solid lines) and compare to the quenched Langevin
algorithm (dashed line close to zero), and to the value reached by AMP for the full
model (upper dotted line) and for the pure matrix model (lower dotted line). We see
that unless the annealing is very fast, it reaches the AMP value. When the annealing
is very slow it takes time to reach the AMP value.

vergence to equilibrium. This is particularly striking given
that for AMP it has been proven in (7) that mismatching the
parameters can never improve the performance.

8. Perspectives

In this work we have investigated the performances of the
Langevin algorithm considered as a tool to sample the posterior
measure in the spiked matrix-tensor model. We have shown
that the Langevin algorithm fails to find the signal in part of
the AMP-easy region. Our analysis is based on the Langevin
State Evolution equations that describe the evolution of the
algorithm in the large size limit.

In this work we managed to find the landscape-annealing
protocol under which the Langevin algorithm is able to match
the performance of AMP by relying on knowledge about gen-
erative model. It would be an interesting direction for future
work to investigate whether the performance of the Langevin
algorithm can be improved with some model-blind manner.

While we studied here the spiked matrix-tensor model, we
expect that our findings are universal because they are due
to the glassiness of the hard phase and therefore should apply
to any local sampling dynamics, e.g. to Monte Carlo Markov
chains. An interesting extension of this work would investigate
algorithms closer to stochastic gradient descent and models
closer to current neural network architectures.
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the global maximizer of the free entropy (5), and
m! > mAMP ¼ 0.

(iii) Impossible, in red, for Δ2 > 1 and high
Δp > ΔIT

p ðΔ2Þ: The fixed point of the state evolution
(6) is the global maximizer of the free entropy (5),
and m! ¼ mAMP ¼ 0.

For the 2þ p-spin model with p > 3, the phase diagram
is slightly richer and is presented in Appendix D 4.

IV. LANGEVIN ALGORITHM AND ITS ANALYSIS

We now turn to the core of the paper and the analysis of
the Langevin algorithm. In statistics, the most common way
to compute the Bayes-optimal estimator (3) is to attempt to
sample the posterior distribution (2) and to use several
independent samples to compute the expectation in Eq. (3).
In order to do perform this process, one needs to set up a
stochastic dynamics on x that has a stationary measure
at long times given by the posterior measure (2). The
Langevin algorithm is one possibility (others include,
notably, the Markov chain Monte Carlo method). The
common bottleneck is that the time needed to achieve
stationarity can, in general, be exponential in the system
size, in which case the algorithm is practically useless.
However, this result is not always the case, and there are
regions in parameter space where one can expect that the
relaxation to the posterior measure happens on tractable

timescales. Therefore, it is crucial to understand where this
happens and what the associated relaxation timescales are.
The Langevin algorithm on the hypersphere with the

Hamiltonian given by Eq. (4) reads

_xiðtÞ ¼ −μðtÞxiðtÞ −
∂H
∂xi þ ηiðtÞ; ð7Þ

where ηiðtÞ is a zero mean noise term, with
hηiðtÞηjðt0Þi ¼ 2δijδðt − t0Þ, where the average h·i is with
respect to the realizations of the noise. The Lagrange
multiplier μðtÞ is chosen in such a way that the dynamics
remains on the hypersphere. In the large-N limit, one finds
μðtÞ ¼ 1–2H2ðtÞ − pHpðtÞ, where the H2ðtÞ is the first
term from Eq. (4) evaluated at xðtÞ, and HpðtÞ is the value
of the second term from Eq. (4).
The presented spiked matrix-tensor model falls into the

particular class of spherical 2þ p-spin glasses [41,42] for
which the performance of the Langevin algorithm can be
tracked exactly in the large-N limit via a set of integro-
partial differential equations [26,27], previously dubbed
CHSCK. We call this generalized version of the CHSCK
equations the Langevin state evolution (LSE) equations, in
analogy to the state evolution of AMP.
In order to write the LSE equations, we define three

dynamical correlation functions,

CNðt; t0Þ≡ 1

N

XN

i¼1

xiðtÞxiðt0Þ; ð8Þ

C̄NðtÞ≡ 1

N

XN

i¼1

xiðtÞx!i ; ð9Þ

RNðt; t0Þ≡ 1

N

XN

i¼1

∂xiðtÞ=∂hiðt0Þjhi¼0; ð10Þ

where hi is a pointwise external field applied at time t0 to
the Hamiltonian as Hþ

P
i hixi. We note that the corre-

lation functions defined above depend on the realization
of the thermal history [i.e., of the noise ηðtÞ] and on the
disorder (here, the matrix Y and tensor T). However, in the
large-N limit, they all concentrate around their averages.
Thus, we define Cðt; t0Þ ¼ limN→∞EY;ThCNðt; t0Þiη and
analogously for C̄ðtÞ and Rðt; t0Þ. Standard field theoretical
methods [43] or dynamical cavity method arguments [44]
can then be used to obtain a closed set of integrodifferential
equations for the averaged dynamical correlation functions,
describing the average global evolution of the system under
the Langevin algorithm. The resulting LSE equations are
(see Appendix C for a complete derivation)

FIG. 1. Phase diagram of the spiked 2þ 3-spin model (the
matrix and order-3 tensor are observed). In the easy (green)
region, the AMP achieves an optimal error smaller than the
random pick from the prior. In the impossible region (red), the
optimal error is as bad as the random pick from the prior, and
the AMP achieves it as well. In the hard region (orange), the
optimal error is low, but the AMP does not find an estimator
better than the random pick from the prior. In the case of the
Langevin algorithm, the performance is strictly worse than that
for the AMP in the sense that the hard region increases up to the
line 1=Δ!

2 ¼ maxð1;
ffiffiffiffiffiffiffiffiffiffiffi
Δ3=2

p
Þ, depicted by green dots. The green

circles are obtained by numerical extrapolation of the Langevin
state evolution equations.
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(a) Toy Model on CIFAR-10, B = 100, ↵ = 0.1.
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(b) Fully Connected on MNIST, B = 128, ↵ = 0.01.
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(c) Small Net on CIFAR-10, B = 100, ↵ = 0.01.
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(d) ResNet-18 on CIFAR-100. B = 64, ↵ = 0.01.

Figure 4. Mean square displacements rescaled by the noise on the loss’s gradient. Since the behavior of the curves differ in different
phases, we show the smaller tw < t2 on the top set, and the larger tw > t2 on the lower set. For reference, some tw appear in both sets.
The black segment on the bottom sets represents a slope ⇠ t.

termediate plateau13, contrary to what found in Fig. 1(b).
The form of �(tw, tw + t) is instead the one characteristic
of diffusion (the curves �/D would be straight lines in a
log-log plot only if D didn’t depend on tw).

Both the aging and the diffusive regimes are present and
qualitatively similar in all the analyzed networks. The
fact that a slow aging dynamics is also present in model
A (Toy Model), that supposedly has no barriers (see Sec. 3),
strengthens the conclusion that the dynamics slows down
because of the emergence of flat directions that ultimately
lead to diffusion at or close to the bottom of the landscape.
A deeper analysis of the finer properties of the diffusive
regime will be studied in a forthcoming publication.

13The shape of the mean-square displacements is different for
different networks, possibly indicating that the manifolds corre-
sponding to the bottom of the landscape have different geometric
characterization.

4. Discussion

In this work we have analyzed the training dynamics
of DNNs by methods developed in physics for out-of-
equilibrium disordered systems. We have studied the time
dependence of the loss value and the mean-square displace-
ments of the weights and compared them to their counter-
parts in physical systems, in particular the 3-spin spherical
spin-glass. The analysis of the time-dependence of the loss
function and the mean square displacement indicates that
there are at least three time regimes in the training process:
one corresponding to an initial exploration of the energy/loss
landscape, followed by a decrease of the loss, in which the
system displays aging dynamics, and a final regime in which
the dynamics appears to be almost stationary and diffusive.
Barrier crossing does not seem to play any role. The slowing
down can be instead traced back to an increasingly large
amount of flat directions that become available to the system

To which extent are these concepts general (e.g. phase retrieval) and/or applicable to ML? 
Can we reduce overparametrization, dataset’s size, propose more efficient versions of SGD?

Tensor PCA: two strategies (one is very general!) to optimise GD

12 September, 2023
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(b) Fully Connected on MNIST, B = 128, ↵ = 0.01.
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(c) Small Net on CIFAR-10, B = 100, ↵ = 0.01.
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Figure 4. Mean square displacements rescaled by the noise on the loss’s gradient. Since the behavior of the curves differ in different
phases, we show the smaller tw < t2 on the top set, and the larger tw > t2 on the lower set. For reference, some tw appear in both sets.
The black segment on the bottom sets represents a slope ⇠ t.

termediate plateau13, contrary to what found in Fig. 1(b).
The form of �(tw, tw + t) is instead the one characteristic
of diffusion (the curves �/D would be straight lines in a
log-log plot only if D didn’t depend on tw).

Both the aging and the diffusive regimes are present and
qualitatively similar in all the analyzed networks. The
fact that a slow aging dynamics is also present in model
A (Toy Model), that supposedly has no barriers (see Sec. 3),
strengthens the conclusion that the dynamics slows down
because of the emergence of flat directions that ultimately
lead to diffusion at or close to the bottom of the landscape.
A deeper analysis of the finer properties of the diffusive
regime will be studied in a forthcoming publication.

13The shape of the mean-square displacements is different for
different networks, possibly indicating that the manifolds corre-
sponding to the bottom of the landscape have different geometric
characterization.

4. Discussion

In this work we have analyzed the training dynamics
of DNNs by methods developed in physics for out-of-
equilibrium disordered systems. We have studied the time
dependence of the loss value and the mean-square displace-
ments of the weights and compared them to their counter-
parts in physical systems, in particular the 3-spin spherical
spin-glass. The analysis of the time-dependence of the loss
function and the mean square displacement indicates that
there are at least three time regimes in the training process:
one corresponding to an initial exploration of the energy/loss
landscape, followed by a decrease of the loss, in which the
system displays aging dynamics, and a final regime in which
the dynamics appears to be almost stationary and diffusive.
Barrier crossing does not seem to play any role. The slowing
down can be instead traced back to an increasingly large
amount of flat directions that become available to the system

To which extent are these concepts general (e.g. phase retrieval) and/or applicable to ML? 
Can we reduce overparametrization, dataset’s size, propose more efficient versions of SGD?

Tensor PCA: two strategies (one is very general!) to optimise GD
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(a) Toy Model on CIFAR-10, B = 100, ↵ = 0.1.
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(b) Fully Connected on MNIST, B = 128, ↵ = 0.01.
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(c) Small Net on CIFAR-10, B = 100, ↵ = 0.01.
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(d) ResNet-18 on CIFAR-100. B = 64, ↵ = 0.01.

Figure 4. Mean square displacements rescaled by the noise on the loss’s gradient. Since the behavior of the curves differ in different
phases, we show the smaller tw < t2 on the top set, and the larger tw > t2 on the lower set. For reference, some tw appear in both sets.
The black segment on the bottom sets represents a slope ⇠ t.

termediate plateau13, contrary to what found in Fig. 1(b).
The form of �(tw, tw + t) is instead the one characteristic
of diffusion (the curves �/D would be straight lines in a
log-log plot only if D didn’t depend on tw).

Both the aging and the diffusive regimes are present and
qualitatively similar in all the analyzed networks. The
fact that a slow aging dynamics is also present in model
A (Toy Model), that supposedly has no barriers (see Sec. 3),
strengthens the conclusion that the dynamics slows down
because of the emergence of flat directions that ultimately
lead to diffusion at or close to the bottom of the landscape.
A deeper analysis of the finer properties of the diffusive
regime will be studied in a forthcoming publication.

13The shape of the mean-square displacements is different for
different networks, possibly indicating that the manifolds corre-
sponding to the bottom of the landscape have different geometric
characterization.

4. Discussion

In this work we have analyzed the training dynamics
of DNNs by methods developed in physics for out-of-
equilibrium disordered systems. We have studied the time
dependence of the loss value and the mean-square displace-
ments of the weights and compared them to their counter-
parts in physical systems, in particular the 3-spin spherical
spin-glass. The analysis of the time-dependence of the loss
function and the mean square displacement indicates that
there are at least three time regimes in the training process:
one corresponding to an initial exploration of the energy/loss
landscape, followed by a decrease of the loss, in which the
system displays aging dynamics, and a final regime in which
the dynamics appears to be almost stationary and diffusive.
Barrier crossing does not seem to play any role. The slowing
down can be instead traced back to an increasingly large
amount of flat directions that become available to the system

To which extent are these concepts general (e.g. phase retrieval) and/or applicable to ML? 
Can we reduce overparametrization, dataset’s size, propose more efficient versions of SGD?

Tensor PCA: two strategies (one is very general!) to optimise GD
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