## The giant component, articulation points and bredges in configuration model networks

## Ofer Biham

The Racah Institute of Physics
The Hebrew University of Jerusalem

In collaboration with
Eytan Katzav, Reimer Kühn, Haggai Bonneau and Ido Tishby

## Outline

- Random networks: the configuration model
- The microstructure of the giant component
- Articulation points (APs) and bredges
- Statistical analysis and correlations


## Random Networks

Random networks (graphs) consist nodes that are connected to each other by edges according to some stochastic rule.

Random network
Lattice


## Random Networks

Microstructure: degree distribution

Large-scale structure:
the distribution of shortest path lengths
(DSPL)


## Random Networks/Graphs

In random regular graphs (RRGs) all the nodes are of the same degree $c \geq 3$. The network consists of a single connected component of size $N$.


$$
\begin{gathered}
c=4 \\
N=10
\end{gathered}
$$



$$
\begin{gathered}
c=5 \\
N=20
\end{gathered}
$$

## Random Networks

Erdős-Rényi (ER) graphs: $N$ nodes, where each pair of nodes is connected independently with probability $p$ - denoted by $E R(N, p)$.

- No degree-degree correlations or any other correlations.


$$
p=0.6
$$



## Erdős-Rényi (ER) networks

An ER network consists of $N$ nodes, where each pair of nodes is connected with probability $p$. The mean degree is $c=(N-1) p$.
subcritical regime: $c<1$


$$
\mathrm{N}=200, \mathrm{c}=0.9
$$

supercritical regime: $c>1$


$$
\mathrm{N}=200, \mathrm{c}=1.1
$$

## The Configuration Model

One can impose any degree sequence, obtained from a certain degree distribution $\boldsymbol{P}(\boldsymbol{k})$. This can be an exponential, Gaussian, Poisson or a power-law distribution. In these networks there are no degree-degree correlations. They form a maximum entropy ensemble, and are referred to as Configuration model networks.


$$
P(k)=A k^{-\gamma}
$$

## The giant component

ER networks: percolation transition at $\mathrm{c}=1$. It has two order parameters:
$g$ : probability that a randomly selected node resides on the giant component
$\tilde{g}$ : probability that a node selected via a random edge resides on the giant component
Self-consistent equations:


$$
\begin{aligned}
& 1-\tilde{g}=G_{1}(1-\tilde{g}) \\
& 1-g=G_{0}(1-\tilde{g})
\end{aligned}
$$

Generating functions:

$$
\begin{aligned}
& G_{0}(x)=\sum_{k=0}^{\infty} x^{k} P(k) \\
& G_{1}(x)=\sum_{k=1}^{\infty} x^{k-1} \frac{k}{c} P(k)
\end{aligned}
$$

## The Giant Component of ER Networks

ER network


$$
\begin{gathered}
P(k \mid \mathrm{GC})=\frac{1-(1-\tilde{g})^{k}}{g} P(k) \\
g=1+\frac{W\left(-c e^{-c}\right)}{c}
\end{gathered}
$$

I. Tishby, O. Biham, E. Katzav and R. Kühn, Revealing the microstructure of the giant component in random graph ensembles, Phys. Rev. E 97, 042318 (2018)

## The structure of the giant component

Giant component $=2$-core + tree-like branches

Finite components = trees


## The Degree Distribution on the GC

## For example for ER:

$$
P(K \mid \mathrm{GC})=\frac{1}{g}\left[\frac{e^{-c} c^{k}}{k!}-(1-g) \frac{e^{-c(1-g)}[c(1-g)]^{k}}{k!}\right] \quad \mathrm{c}_{1}=(2-g) c
$$




## Degree-Degree Correlations on the GC

Assortativity Coefficient:

$$
\mathrm{r}=\frac{\mathrm{E}\left[\mathrm{KK}^{\prime} \mid \mathrm{GC}\right]-(\mathrm{E}[\mathrm{~K} \mid \mathrm{GC}])^{2}}{\operatorname{Var}(\mathrm{~K} \mid \mathrm{GC})}
$$




Reimer's notes on the GC

$$
\begin{aligned}
& C_{i=}^{i}{\underset{\sigma}{0}}_{1}^{d} \frac{c}{N} \xrightarrow[1-\frac{c}{N}]{ } \longrightarrow\left\{\begin{array}{l}
1 \\
\rho \\
0 \\
1-\rho
\end{array}\right. \\
& \bar{j} \quad \pi(k \mid 1)=\frac{1}{g}\left(1-(1-\tilde{g})^{k}\right) p_{c} \\
& \pi\left(k_{j} k^{\prime} \mid 1\right)=\frac{1}{g}\left(1-(1-\tilde{g})^{k-1}(1-\tilde{\jmath})^{k^{\prime}-1}\right) p_{n} \frac{k^{\prime}}{c} P_{k^{\prime}} \\
& \left.\pi\left(k_{i} k^{\prime}, k_{v}\right)_{1}^{1} 1\right)=\frac{1}{g}\left(1-(1-\bar{y})^{k-1} \frac{\prod_{v}^{\prime-1}}{\prod_{v=1}}(1-\tilde{g})^{k_{v}-1}\right) P_{k} \frac{k^{\prime}}{c} p_{k^{\prime}} \prod_{v=1}^{k^{\prime}-1} \frac{k v}{c} P_{k_{v}} . \\
& 1-\rho=\sum_{k_{1},\left\{k_{\mu}\right\}} \pi\left(k_{1}\left\{k_{\mu}\right\} \mid 1\right)_{\mu=1}^{\frac{k}{n}}\left(1-\dot{\tilde{\rho}}_{k_{\mu}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 1-\tilde{\rho}_{k^{\prime}=1}=\sum_{k \geq 1} \sum_{\left\{k_{v} \geq 1\right\}} \pi\left(k_{j} k_{1},\left\{k_{\nu}\right\} \mid 1\right)=\sum_{k \geq 1} \pi\left(k_{i} k^{\prime} \mid 1\right)
\end{aligned}
$$

$$
\pi(k, 2 k, i \mid 1)=\therefore \frac{1}{g}(1-
$$

Should find

$$
\begin{aligned}
\frac{k}{1 p_{p=1}\left(1-\tilde{\rho}_{k_{r}}\right)} & =\sum_{\left\{k_{p}\right\}} \underbrace{\pi}\left(k_{1}\right. \\
& =\frac{1}{g} \cdot(1- \\
& =\frac{1}{g}(1-\cdots
\end{aligned}
$$

## Random Networks Consisting of a Single Connected Component

By inverting the relations between $P(k)$ and $P(k \mid 1)$, we can infer $P(k)$ that will exhibit any desired $P(k \mid 1)$. Thus, using the configuration model, a single component network of any desired degree distribution can be generated:

$$
P(k)=\frac{g}{1-(1-\tilde{g})^{k}} P(k \mid 1)
$$

I. Tishby, O. Biham, E. Katzav and R. Kühn, Generating random networks that consist of a single connected component with a given degree distribution, Phys. Rev. E 99, 042308 (2019)

## Single Component Network Models

Define desired size and degree distribution

| $P(k \mid 1)$ |
| :---: |
| $\left\langle N_{1}\right\rangle$ |

$$
P(k)=\frac{g}{1-(1-\tilde{g})^{k}} P(k \mid 1)
$$

Solve self consistent equations (numerically
or analytically)

$$
g \quad \tilde{g}
$$



Remove off-giant components

## Articulation Points

Articulation Points (AP) are "weak points" in the network or "single points of failure". The deletion of an AP breaks up the network component on which it resides into two or more components.


## Articulation Points

Focusing on the giant component, consider the node marked in red, it is an Articulation Point:


Removing it breaks up the giant component into three components, we say that it has an articulation rank $r=2$.


## Bredges* (bridge-edges)

Bredges are "weak links" in the network. The deletion of a bredge breaks up the network component on which it resides into two components.

*English Dictionary, by E. Coles, School-Master and Teacher, printed at the Leg and Star over against the Royal-Exchange in Cornbil (1683).

## Bredges



## Bredges



## The structure of the giant component



ER network

On the giant component there are degree-degree correlations


## Statistical analysis of articulation points

$$
P(i \in \mathrm{GC})=g
$$


I. Tishby, O. Biham, R. Kühn and E. Katzav, Statistical analysis of articulation points in configuration model networks, Phys. Rev. E 98, 062301 (2018)

## Statistical analysis of bredges

$$
P(e \in \mathrm{GC})=(2-\tilde{g}) \tilde{g}
$$


H. Bonneau, O. Biham, R. Kuhn and E. Katzav, Statistical analysis of edges and bredges in configuration model networks, Phys. Rev. E 102, 012314 (2020)

## Articulation Points

Using $g$ and $\tilde{g}$ we derive the probability that a random node is an AP.
Summarizing the 3 cases:

$$
k=1-\text { not an AP }
$$

$P(i \in A P \mid k)=\left\{\begin{array}{c}0, \quad k=0,1 \\ \left(1-\tilde{g}^{k}\right), \quad k \geq 2\end{array}\right.$ $P(i \in A P)=\sum_{k \geq 2}^{\Downarrow}\left(1-\tilde{g}^{k}\right) P(K=k)$

Use Bayes' theorem:

$$
P(k \mid A P)=\frac{P(i \in A P \mid k)}{P(i \in A P)} P(k)
$$

## Articulation Points - Results

For example for ER:

$P(i \in A P)$


## Articulation Points

Using $g$ and $\tilde{g}$ we can also derive the probability that an AP has a given articulation rank $r$ and the network's mean articulation rank $\langle R\rangle$ :

$$
\begin{gathered}
P(R=r \mid F C)=\left\{\begin{array}{c}
\frac{1}{1-g} P(K=0)+\frac{1-\tilde{g}}{1-g} P(K=1), \quad r=0 \\
\frac{(1-\tilde{g})^{r+1}}{1-g} P(K=r+1), \quad r \geq 1
\end{array}\right. \\
P(R=r \mid G C)=\frac{(1-\tilde{g})^{r}}{g} \sum_{k \geq r+1}\binom{n}{k} \tilde{g}^{k-r} P(K=k) \\
\langle R\rangle=(1-\tilde{g})\langle K\rangle+(1-g)+P(K=0)
\end{gathered}
$$

## Articulation Points - Results

For example for ER:

$$
P(R=r)
$$

$\langle R\rangle$



## The fraction of edges that reside on the giant component

$$
P(e \in \mathrm{GC})=(2-\tilde{g}) \tilde{g}
$$



## The probability that a random edge is a bredge



## The degree distributions of end-nodes of edges and bredges

$$
P(k \mid \mathrm{GC})=\frac{1-(1-\tilde{g})^{k}}{g} P(k)
$$

ER network



## The degree distributions of end-nodes of edges and bredges

$$
P(k \mid \mathrm{GC})=\frac{1-(1-\tilde{g})^{k}}{g} P(k) \quad P(k \mid \mathrm{B}, \mathrm{GC})=\frac{1+(2 \tilde{g}-1)(1-\tilde{g})^{k-2}}{2 \tilde{g}} P(k)
$$




## The degree-degree correlations between end-nodes

Covariance: $\quad \boldsymbol{R}=\frac{\mathbf{E}\left[\boldsymbol{K} \boldsymbol{K}^{\prime}\right]-\mathbf{E}[\boldsymbol{K}] \mathbf{E}\left[\boldsymbol{K}^{\prime}\right]}{\mathbf{V}[\boldsymbol{K}]}$
Degree-degree correlations are negative and concentrated in the bredges: The giant component is disassortative. Moreover, the bredges account for all the disassortativity in the giant component.


## APs／Bredges and the geometry of networks



## Edges

．．．．．．．．．．．．bredges
ー ー ー－root－bredges
—— non－bredges

Nodes
－APs
－root－APs
O non－APs

APs and Bredges are fundamental objects in the geometry of networks， and play an important role in failure and attacks，epidemic spreading etc．．．

## Statistical analysis of Bredges

Using the cavity method:

- The probability that a random edge is a bredge $P(e \in B)$
- The degree-distribution of end-nodes of bredges $P\left(k, k^{\prime} \mid B\right)$
- The degree-degree correlation between end-nodes of bredges
- ...

We also studied the statistics of APs and bredges during a bond percolation process that retains a fraction $p$ of the edges in the network, questions like:

What is the probability for a given edge to become a bredge after deleting a fraction of the edges from the network (even if it wasn't a bredge initially) Can be helpful to design vaccination or attack strategies


H. Bonneau, I. Tishby, O. Biham, E. Katzav and R. Kühn,_Fate of articulation points and bredges in percolation, Phys. Rev. E 103, 042302 (2021)

## Summary

- The giant component consists of a 2-core and tree-like branches
- Some of the nodes on the giant component are APs
- The edges on the tree-like branches are bredges
- APs and bredges exhibit special statistical properties
- We obtained analytical results for:
- The probability that a random edge is a bredge
- The degree-distribution of end-nodes of bredges
- The degree-degree correlation between end-nodes
- ...
- It was found that the degree-degree correlations on the GC are negative
- Moreover, these negative correlations are concentrated on the bredges
- These negative correlations are crucial for the integrity of the GC

