
Mathematicians against gene-regulatory networks

Alessia Annibale

Mathematics, King’s College London

DISORDERED SYSTEMS DAYS AT KING’S COLLEGE LONDON

A workshop on disorder to celebrate Reimer Kühn

11-12 September 2023

Outline

1 Motivation

2 Model inspired by neural networks
Model definition
Results

3 Introducing TFs: a bipartite graph model
Model definition
Percolation theory
Dynamics
One-time approximation
Extensions: Multi-node and self-interactions

Outline

1 Motivation

2 Model inspired by neural networks
Model definition
Results

3 Introducing TFs: a bipartite graph model
Model definition
Percolation theory
Dynamics
One-time approximation
Extensions: Multi-node and self-interactions

Cell differentiation

Each cell contains
the same genes,
N ∼ 25000

Different cells

express different

genes

Transcription

factors (TFs)

regulate expression

Cell differentiation

Each cell contains
the same genes,
N ∼ 25000

Different cells

express different

genes

Transcription

factors (TFs)

regulate expression

Cell differentiation

Each cell contains
the same genes,
N ∼ 25000

Different cells

express different

genes

Transcription

factors (TFs)

regulate expression

Cell differentiation

Each cell contains
the same genes,
N ∼ 25000

Different cells

express different

genes

Transcription

factors (TFs)

regulate expression

Cell differentiation

Each cell contains
the same genes,
N ∼ 25000

Different cells

express different

genes

Transcription

factors (TFs)

regulate expression

Cell differentiation

Each cell contains
the same genes,
N ∼ 25000

Different cells

express different

genes

Transcription

factors (TFs)

regulate expression

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, ’Yamanaka factors’, into somatic cells

Source: Cell Transfection — cell-transfection.com

Nobel prize 2012 for Physiology or
Medicine

O(10) days to reprogram

many cells take ’bad trajectories’
after reprogramming.. e.g. cancer

Q: How to control cell fate?

huge dim: ’on/off’ genes ⇒ 225,000

possible gene patterns

Striking that we only have ∼ 300
cell types..

Idea: cell types are attractors of
gene dynamics, like memories for
neural dynamics..

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, ’Yamanaka factors’, into somatic cells

Source: Cell Transfection — cell-transfection.com

Nobel prize 2012 for Physiology or
Medicine

O(10) days to reprogram

many cells take ’bad trajectories’
after reprogramming.. e.g. cancer

Q: How to control cell fate?

huge dim: ’on/off’ genes ⇒ 225,000

possible gene patterns

Striking that we only have ∼ 300
cell types..

Idea: cell types are attractors of
gene dynamics, like memories for
neural dynamics..

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, ’Yamanaka factors’, into somatic cells

Source: Cell Transfection — cell-transfection.com

Nobel prize 2012 for Physiology or
Medicine

O(10) days to reprogram

many cells take ’bad trajectories’
after reprogramming.. e.g. cancer

Q: How to control cell fate?

huge dim: ’on/off’ genes ⇒ 225,000

possible gene patterns

Striking that we only have ∼ 300
cell types..

Idea: cell types are attractors of
gene dynamics, like memories for
neural dynamics..

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, ’Yamanaka factors’, into somatic cells

Source: Cell Transfection — cell-transfection.com

Nobel prize 2012 for Physiology or
Medicine

O(10) days to reprogram

many cells take ’bad trajectories’
after reprogramming.. e.g. cancer

Q: How to control cell fate?

huge dim: ’on/off’ genes ⇒ 225,000

possible gene patterns

Striking that we only have ∼ 300
cell types..

Idea: cell types are attractors of
gene dynamics, like memories for
neural dynamics..

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, ’Yamanaka factors’, into somatic cells

Source: Cell Transfection — cell-transfection.com

Nobel prize 2012 for Physiology or
Medicine

O(10) days to reprogram

many cells take ’bad trajectories’
after reprogramming.. e.g. cancer

Q: How to control cell fate?

huge dim: ’on/off’ genes ⇒ 225,000

possible gene patterns

Striking that we only have ∼ 300
cell types..

Idea: cell types are attractors of
gene dynamics, like memories for
neural dynamics..

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, ’Yamanaka factors’, into somatic cells

Source: Cell Transfection — cell-transfection.com

Nobel prize 2012 for Physiology or
Medicine

O(10) days to reprogram

many cells take ’bad trajectories’
after reprogramming.. e.g. cancer

Q: How to control cell fate?

huge dim: ’on/off’ genes ⇒ 225,000

possible gene patterns

Striking that we only have ∼ 300
cell types..

Idea: cell types are attractors of
gene dynamics, like memories for
neural dynamics..

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, ’Yamanaka factors’, into somatic cells

Source: Cell Transfection — cell-transfection.com

Nobel prize 2012 for Physiology or
Medicine

O(10) days to reprogram

many cells take ’bad trajectories’
after reprogramming.. e.g. cancer

Q: How to control cell fate?

huge dim: ’on/off’ genes ⇒ 225,000

possible gene patterns

Striking that we only have ∼ 300
cell types..

Idea: cell types are attractors of
gene dynamics, like memories for
neural dynamics..

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, ’Yamanaka factors’, into somatic cells

Source: Cell Transfection — cell-transfection.com

Nobel prize 2012 for Physiology or
Medicine

O(10) days to reprogram

many cells take ’bad trajectories’
after reprogramming.. e.g. cancer

Q: How to control cell fate?

huge dim: ’on/off’ genes ⇒ 225,000

possible gene patterns

Striking that we only have ∼ 300
cell types..

Idea: cell types are attractors of
gene dynamics, like memories for
neural dynamics..

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, ’Yamanaka factors’, into somatic cells

Source: Cell Transfection — cell-transfection.com

Nobel prize 2012 for Physiology or
Medicine

O(10) days to reprogram

many cells take ’bad trajectories’
after reprogramming.. e.g. cancer

Q: How to control cell fate?

huge dim: ’on/off’ genes ⇒ 225,000

possible gene patterns

Striking that we only have ∼ 300
cell types..

Idea: cell types are attractors of
gene dynamics, like memories for
neural dynamics..

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, ’Yamanaka factors’, into somatic cells

Source: Cell Transfection — cell-transfection.com

Nobel prize 2012 for Physiology or
Medicine

O(10) days to reprogram

many cells take ’bad trajectories’
after reprogramming.. e.g. cancer

Q: How to control cell fate?

huge dim: ’on/off’ genes ⇒ 225,000

possible gene patterns

Striking that we only have ∼ 300
cell types..

Idea: cell types are attractors of
gene dynamics, like memories for
neural dynamics..

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, ’Yamanaka factors’, into somatic cells

Source: Cell Transfection — cell-transfection.com

Nobel prize 2012 for Physiology or
Medicine

O(10) days to reprogram

many cells take ’bad trajectories’
after reprogramming.. e.g. cancer

Q: How to control cell fate?

huge dim: ’on/off’ genes ⇒ 225,000

possible gene patterns

Striking that we only have ∼ 300
cell types..

Idea: cell types are attractors of
gene dynamics, like memories for
neural dynamics..

Outline

1 Motivation

2 Model inspired by neural networks
Model definition
Results

3 Introducing TFs: a bipartite graph model
Model definition
Percolation theory
Dynamics
One-time approximation
Extensions: Multi-node and self-interactions

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes

⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes

⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes

⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes ⇒
reduced system of interacting genes

hi(t)=
∑

j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes ⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes ⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes ⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]

Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes ⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes ⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes ⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes ⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes ⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes ⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes ⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes ⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes ⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes ⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes ⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ

Nature of cellular attractors

cell types are hierarchically organized

dynamical entities i.e. they cycle (G1→S→G2→M→G1 . . .)

⇒ Choose Jij to encode hierarchically organized cycles

ρ=cell-cycle stage ∈ {1 . . . C}
µ = somatic cell type ∈ {1 . . .M}
ηρi , η

ρµ
i ∈{0, 1}: gene i in given cell type

& phase

Nature of cellular attractors

cell types are hierarchically organized

dynamical entities i.e. they cycle (G1→S→G2→M→G1 . . .)

⇒ Choose Jij to encode hierarchically organized cycles

ρ=cell-cycle stage ∈ {1 . . . C}
µ = somatic cell type ∈ {1 . . .M}
ηρi , η

ρµ
i ∈{0, 1}: gene i in given cell type

& phase

Nature of cellular attractors

cell types are hierarchically organized

dynamical entities i.e. they cycle (G1→S→G2→M→G1 . . .)

⇒ Choose Jij to encode hierarchically organized cycles

ρ=cell-cycle stage ∈ {1 . . . C}
µ = somatic cell type ∈ {1 . . .M}
ηρi , η

ρµ
i ∈{0, 1}: gene i in given cell type

& phase

Nature of cellular attractors

cell types are hierarchically organized

dynamical entities i.e. they cycle (G1→S→G2→M→G1 . . .)

⇒ Choose Jij to encode hierarchically organized cycles

ρ=cell-cycle stage ∈ {1 . . . C}
µ = somatic cell type ∈ {1 . . .M}
ηρi , η

ρµ
i ∈{0, 1}: gene i in given cell type

& phase

Nature of cellular attractors

cell types are hierarchically organized

dynamical entities i.e. they cycle (G1→S→G2→M→G1 . . .)

⇒ Choose Jij to encode hierarchically organized cycles

ρ=cell-cycle stage ∈ {1 . . . C}
µ = somatic cell type ∈ {1 . . .M}
ηρi , η

ρµ
i ∈{0, 1}: gene i in given cell type

& phase

Nature of cellular attractors

cell types are hierarchically organized

dynamical entities i.e. they cycle (G1→S→G2→M→G1 . . .)

⇒ Choose Jij to encode hierarchically organized cycles

ρ=cell-cycle stage ∈ {1 . . . C}

µ = somatic cell type ∈ {1 . . .M}
ηρi , η

ρµ
i ∈{0, 1}: gene i in given cell type

& phase

Nature of cellular attractors

cell types are hierarchically organized

dynamical entities i.e. they cycle (G1→S→G2→M→G1 . . .)

⇒ Choose Jij to encode hierarchically organized cycles

ρ=cell-cycle stage ∈ {1 . . . C}
µ = somatic cell type ∈ {1 . . .M}

ηρi , η
ρµ
i ∈{0, 1}: gene i in given cell type

& phase

Nature of cellular attractors

cell types are hierarchically organized

dynamical entities i.e. they cycle (G1→S→G2→M→G1 . . .)

⇒ Choose Jij to encode hierarchically organized cycles

ρ=cell-cycle stage ∈ {1 . . . C}
µ = somatic cell type ∈ {1 . . .M}
ηρi , η

ρµ
i ∈{0, 1}: gene i in given cell type

& phase

Inspiration from neural networks

Sequences of patterns: ξ1 → ξ2 → . . . ξP [Sompolinsky, Kanter (1986)]

Jij =
1

N

P∑
µ=1

ξµ+1
i ξµj Cycles : ξP+1 = ξ1

Patterns hierarchically organized ξρ → {ξρµ} → {{ξρµλ}}

[Parga, Virasoro (1986); Krogh, Herz (1988)]

Markov process [defn as martingale]:

W (ξµ1...µk+1 |ξµ1...µk)

Jij=
1

N

{
M∑
ρ=1

ξρi ξ
ρ
j

q1
+

M∑
ρµ=1

(ξρµi −ξρi)(ξ
ρµ
j −ξρj)

q2 − q1
+

M∑
ρµλ=1

(ξρµλi −ξρµi)(ξρµλj −ξρµj)

1− q2

}
⇒ Combine and adapt to 0,1 variables.. (for a more general W)

Inspiration from neural networks

Sequences of patterns: ξ1 → ξ2 → . . . ξP [Sompolinsky, Kanter (1986)]

Jij =
1

N

P∑
µ=1

ξµ+1
i ξµj Cycles : ξP+1 = ξ1

Patterns hierarchically organized ξρ → {ξρµ} → {{ξρµλ}}

[Parga, Virasoro (1986); Krogh, Herz (1988)]

Markov process [defn as martingale]:

W (ξµ1...µk+1 |ξµ1...µk)

Jij=
1

N

{
M∑
ρ=1

ξρi ξ
ρ
j

q1
+

M∑
ρµ=1

(ξρµi −ξρi)(ξ
ρµ
j −ξρj)

q2 − q1
+

M∑
ρµλ=1

(ξρµλi −ξρµi)(ξρµλj −ξρµj)

1− q2

}
⇒ Combine and adapt to 0,1 variables.. (for a more general W)

Inspiration from neural networks

Sequences of patterns: ξ1 → ξ2 → . . . ξP [Sompolinsky, Kanter (1986)]

Jij =
1

N

P∑
µ=1

ξµ+1
i ξµj Cycles : ξP+1 = ξ1

Patterns hierarchically organized ξρ → {ξρµ} → {{ξρµλ}}

[Parga, Virasoro (1986); Krogh, Herz (1988)]

Markov process [defn as martingale]:

W (ξµ1...µk+1 |ξµ1...µk)

Jij=
1

N

{
M∑
ρ=1

ξρi ξ
ρ
j

q1
+

M∑
ρµ=1

(ξρµi −ξρi)(ξ
ρµ
j −ξρj)

q2 − q1
+

M∑
ρµλ=1

(ξρµλi −ξρµi)(ξρµλj −ξρµj)

1− q2

}
⇒ Combine and adapt to 0,1 variables.. (for a more general W)

Inspiration from neural networks

Sequences of patterns: ξ1 → ξ2 → . . . ξP [Sompolinsky, Kanter (1986)]

Jij =
1

N

P∑
µ=1

ξµ+1
i ξµj Cycles : ξP+1 = ξ1

Patterns hierarchically organized ξρ → {ξρµ} → {{ξρµλ}}

[Parga, Virasoro (1986); Krogh, Herz (1988)]

Markov process [defn as martingale]:

W (ξµ1...µk+1 |ξµ1...µk)

Jij=
1

N

{
M∑
ρ=1

ξρi ξ
ρ
j

q1
+

M∑
ρµ=1

(ξρµi −ξρi)(ξ
ρµ
j −ξρj)

q2 − q1
+

M∑
ρµλ=1

(ξρµλi −ξρµi)(ξρµλj −ξρµj)

1− q2

}
⇒ Combine and adapt to 0,1 variables.. (for a more general W)

Inspiration from neural networks

Sequences of patterns: ξ1 → ξ2 → . . . ξP [Sompolinsky, Kanter (1986)]

Jij =
1

N

P∑
µ=1

ξµ+1
i ξµj Cycles : ξP+1 = ξ1

Patterns hierarchically organized ξρ → {ξρµ} → {{ξρµλ}}

[Parga, Virasoro (1986); Krogh, Herz (1988)]

Markov process [defn as martingale]:

W (ξµ1...µk+1 |ξµ1...µk)

Jij=
1

N

{
M∑
ρ=1

ξρi ξ
ρ
j

q1
+

M∑
ρµ=1

(ξρµi −ξρi)(ξ
ρµ
j −ξρj)

q2 − q1
+

M∑
ρµλ=1

(ξρµλi −ξρµi)(ξρµλj −ξρµj)

1− q2

}
⇒ Combine and adapt to 0,1 variables.. (for a more general W)

Inspiration from neural networks

Sequences of patterns: ξ1 → ξ2 → . . . ξP [Sompolinsky, Kanter (1986)]

Jij =
1

N

P∑
µ=1

ξµ+1
i ξµj Cycles : ξP+1 = ξ1

Patterns hierarchically organized ξρ → {ξρµ} → {{ξρµλ}}

[Parga, Virasoro (1986); Krogh, Herz (1988)]

Markov process [defn as martingale]:

W (ξµ1...µk+1 |ξµ1...µk)

Jij=
1

N

{
M∑
ρ=1

ξρi ξ
ρ
j

q1
+

M∑
ρµ=1

(ξρµi −ξρi)(ξ
ρµ
j −ξρj)

q2 − q1
+

M∑
ρµλ=1

(ξρµλi −ξρµi)(ξρµλj −ξρµj)

1− q2

}
⇒ Combine and adapt to 0,1 variables.. (for a more general W)

Inspiration from neural networks

Sequences of patterns: ξ1 → ξ2 → . . . ξP [Sompolinsky, Kanter (1986)]

Jij =
1

N

P∑
µ=1

ξµ+1
i ξµj Cycles : ξP+1 = ξ1

Patterns hierarchically organized ξρ → {ξρµ} → {{ξρµλ}}

[Parga, Virasoro (1986); Krogh, Herz (1988)]

Markov process [defn as martingale]:

W (ξµ1...µk+1 |ξµ1...µk)

Jij=
1

N

{
M∑
ρ=1

ξρi ξ
ρ
j

q1
+

M∑
ρµ=1

(ξρµi −ξρi)(ξ
ρµ
j −ξρj)

q2 − q1
+

M∑
ρµλ=1

(ξρµλi −ξρµi)(ξρµλj −ξρµj)

1− q2

}
⇒ Combine and adapt to 0,1 variables.. (for a more general W)

Inspiration from neural networks

Sequences of patterns: ξ1 → ξ2 → . . . ξP [Sompolinsky, Kanter (1986)]

Jij =
1

N

P∑
µ=1

ξµ+1
i ξµj Cycles : ξP+1 = ξ1

Patterns hierarchically organized ξρ → {ξρµ} → {{ξρµλ}}

[Parga, Virasoro (1986); Krogh, Herz (1988)]

Markov process [defn as martingale]:

W (ξµ1...µk+1 |ξµ1...µk)

Jij=
1

N

{
M∑
ρ=1

ξρi ξ
ρ
j

q1
+

M∑
ρµ=1

(ξρµi −ξρi)(ξ
ρµ
j −ξρj)

q2 − q1
+

M∑
ρµλ=1

(ξρµλi −ξρµi)(ξρµλj −ξρµj)

1− q2

}

⇒ Combine and adapt to 0,1 variables.. (for a more general W)

Inspiration from neural networks

Sequences of patterns: ξ1 → ξ2 → . . . ξP [Sompolinsky, Kanter (1986)]

Jij =
1

N

P∑
µ=1

ξµ+1
i ξµj Cycles : ξP+1 = ξ1

Patterns hierarchically organized ξρ → {ξρµ} → {{ξρµλ}}

[Parga, Virasoro (1986); Krogh, Herz (1988)]

Markov process [defn as martingale]:

W (ξµ1...µk+1 |ξµ1...µk)

Jij=
1

N

{
M∑
ρ=1

ξρi ξ
ρ
j

q1
+

M∑
ρµ=1

(ξρµi −ξρi)(ξ
ρµ
j −ξρj)

q2 − q1
+

M∑
ρµλ=1

(ξρµλi −ξρµi)(ξρµλj −ξρµj)

1− q2

}

⇒ Combine and adapt to 0,1 variables.. (for a more general W)

Inspiration from neural networks

Sequences of patterns: ξ1 → ξ2 → . . . ξP [Sompolinsky, Kanter (1986)]

Jij =
1

N

P∑
µ=1

ξµ+1
i ξµj Cycles : ξP+1 = ξ1

Patterns hierarchically organized ξρ → {ξρµ} → {{ξρµλ}}

[Parga, Virasoro (1986); Krogh, Herz (1988)]

Markov process [defn as martingale]:

W (ξµ1...µk+1 |ξµ1...µk)

Jij=
1

N

{
M∑
ρ=1

ξρi ξ
ρ
j

q1
+

M∑
ρµ=1

(ξρµi −ξρi)(ξ
ρµ
j −ξρj)

q2 − q1
+

M∑
ρµλ=1

(ξρµλi −ξρµi)(ξρµλj −ξρµj)

1− q2

}
⇒ Combine and adapt to 0,1 variables.. (for a more general W)

Outline

1 Motivation

2 Model inspired by neural networks
Model definition
Results

3 Introducing TFs: a bipartite graph model
Model definition
Percolation theory
Dynamics
One-time approximation
Extensions: Multi-node and self-interactions

Results

get eqns. for correlations of n with ηρ (mρ, full) and with ηρµ (mρµ,
dashed). Here ρ = 1, 2, 3.

Dependence on noise level De-differentiation, T=0.14

Note: de-differentiation takes O(10) cycles.

[R Hannam, AA, R Kühn, J Phys A (2017)]

Results

get eqns. for correlations of n with ηρ (mρ, full) and with ηρµ (mρµ,
dashed). Here ρ = 1, 2, 3.

Dependence on noise level

De-differentiation, T=0.14

Note: de-differentiation takes O(10) cycles.

[R Hannam, AA, R Kühn, J Phys A (2017)]

Results

get eqns. for correlations of n with ηρ (mρ, full) and with ηρµ (mρµ,
dashed). Here ρ = 1, 2, 3.

Dependence on noise level De-differentiation, T=0.14

Note: de-differentiation takes O(10) cycles.

[R Hannam, AA, R Kühn, J Phys A (2017)]

Results

get eqns. for correlations of n with ηρ (mρ, full) and with ηρµ (mρµ,
dashed). Here ρ = 1, 2, 3.

Dependence on noise level De-differentiation, T=0.14

Note: de-differentiation takes O(10) cycles.

[R Hannam, AA, R Kühn, J Phys A (2017)]

Results

get eqns. for correlations of n with ηρ (mρ, full) and with ηρµ (mρµ,
dashed). Here ρ = 1, 2, 3.

Dependence on noise level De-differentiation, T=0.14

Note: de-differentiation takes O(10) cycles.

[R Hannam, AA, R Kühn, J Phys A (2017)]

Results

Apply direct perturbation to genes to drive transition from somatic →
stem cell

Correlations vs fraction q of perturbed genes, T = 0.01.

Critical fraction of genes qr∈ [0.1, 0.2] (↘ when T ↗)

[R Hannam, AA, R Kühn, J Phys A (2017)]

Results

Apply direct perturbation to genes to drive transition from somatic →
stem cell

Correlations vs fraction q of perturbed genes, T = 0.01.

Critical fraction of genes qr∈ [0.1, 0.2] (↘ when T ↗)

[R Hannam, AA, R Kühn, J Phys A (2017)]

Results

Apply direct perturbation to genes to drive transition from somatic →
stem cell

Correlations vs fraction q of perturbed genes, T = 0.01.

Critical fraction of genes qr∈ [0.1, 0.2] (↘ when T ↗)

[R Hannam, AA, R Kühn, J Phys A (2017)]

Results

Apply direct perturbation to genes to drive transition from somatic →
stem cell

Correlations vs fraction q of perturbed genes, T = 0.01.

Critical fraction of genes qr∈ [0.1, 0.2] (↘ when T ↗)

[R Hannam, AA, R Kühn, J Phys A (2017)]

Results

If we include in the system only regulatory genes:

Nr ≃ 0.1N ≃ 2, 500 ⇒ qrNr ≃ 250 - 500 genes

Also:

each Yamanaka TF involved in regulating O(100) genes

⇒ can perturb qrNr genes with O(3−5) TFs! (Yamanaka
territory!)

Q: Biological grounds for interactions?

Results

If we include in the system only regulatory genes:

Nr ≃ 0.1N ≃ 2, 500 ⇒ qrNr ≃ 250 - 500 genes

Also:

each Yamanaka TF involved in regulating O(100) genes

⇒ can perturb qrNr genes with O(3−5) TFs! (Yamanaka
territory!)

Q: Biological grounds for interactions?

Results

If we include in the system only regulatory genes:

Nr ≃ 0.1N ≃ 2, 500 ⇒ qrNr ≃ 250 - 500 genes

Also:

each Yamanaka TF involved in regulating O(100) genes

⇒ can perturb qrNr genes with O(3−5) TFs! (Yamanaka
territory!)

Q: Biological grounds for interactions?

Results

If we include in the system only regulatory genes:

Nr ≃ 0.1N ≃ 2, 500 ⇒ qrNr ≃ 250 - 500 genes

Also:

each Yamanaka TF involved in regulating O(100) genes

⇒ can perturb qrNr genes with O(3−5) TFs! (Yamanaka
territory!)

Q: Biological grounds for interactions?

Results

If we include in the system only regulatory genes:

Nr ≃ 0.1N ≃ 2, 500 ⇒ qrNr ≃ 250 - 500 genes

Also:

each Yamanaka TF involved in regulating O(100) genes

⇒ can perturb qrNr genes with O(3−5) TFs! (Yamanaka
territory!)

Q: Biological grounds for interactions?

Results

If we include in the system only regulatory genes:

Nr ≃ 0.1N ≃ 2, 500 ⇒ qrNr ≃ 250 - 500 genes

Also:

each Yamanaka TF involved in regulating O(100) genes

⇒ can perturb qrNr genes with O(3−5) TFs! (Yamanaka
territory!)

Q: Biological grounds for interactions?

Outline

1 Motivation

2 Model inspired by neural networks
Model definition
Results

3 Introducing TFs: a bipartite graph model
Model definition
Percolation theory
Dynamics
One-time approximation
Extensions: Multi-node and self-interactions

A bipartite graph approach

1 2 ν µ ρ P = αN

1 2 k i j N

ηµi ξµj

doutk

coutν
cinρ

dinj

ηµi ∈{0, 1}

ξµi ∈{0,±1}

ni(t+ 1)=Θ[
∑
µ

ξµi τµ(t)−ϑi−zi(t)], τµ(t)=concentration of TF µ at t

Different types of logic for TFs:

AND: TF µ ’ON’ if all contributing genes ’ON’

τµ(t) =
∏

j:ηµ
j =1

nj(t)

OR: TF µ ’ON’ if at least one contributing gene ’ON’

τµ(t) =
1

cinµ

∑
j

ηµj nj(t)

A bipartite graph approach

1 2 ν µ ρ P = αN

1 2 k i j N

ηµi ξµj

doutk

coutν
cinρ

dinj

ηµi ∈{0, 1}

ξµi ∈{0,±1}

ni(t+ 1)=Θ[
∑
µ

ξµi τµ(t)−ϑi−zi(t)], τµ(t)=concentration of TF µ at t

Different types of logic for TFs:

AND: TF µ ’ON’ if all contributing genes ’ON’

τµ(t) =
∏

j:ηµ
j =1

nj(t)

OR: TF µ ’ON’ if at least one contributing gene ’ON’

τµ(t) =
1

cinµ

∑
j

ηµj nj(t)

A bipartite graph approach

1 2 ν µ ρ P = αN

1 2 k i j N

ηµi ξµj

doutk

coutν
cinρ

dinj

ηµi ∈{0, 1}

ξµi ∈{0,±1}

ni(t+ 1)=Θ[
∑
µ

ξµi τµ(t)−ϑi−zi(t)], τµ(t)=concentration of TF µ at t

Different types of logic for TFs:

AND: TF µ ’ON’ if all contributing genes ’ON’

τµ(t) =
∏

j:ηµ
j =1

nj(t)

OR: TF µ ’ON’ if at least one contributing gene ’ON’

τµ(t) =
1

cinµ

∑
j

ηµj nj(t)

A bipartite graph approach

1 2 ν µ ρ P = αN

1 2 k i j N

ηµi ξµj

doutk

coutν
cinρ

dinj

ηµi ∈{0, 1}

ξµi ∈{0,±1}

ni(t+ 1)=Θ[
∑
µ

ξµi τµ(t)−ϑi−zi(t)], τµ(t)=concentration of TF µ at t

Different types of logic for TFs:

AND: TF µ ’ON’ if all contributing genes ’ON’

τµ(t) =
∏

j:ηµ
j =1

nj(t)

OR: TF µ ’ON’ if at least one contributing gene ’ON’

τµ(t) =
1

cinµ

∑
j

ηµj nj(t)

A bipartite graph approach

1 2 ν µ ρ P = αN

1 2 k i j N

ηµi ξµj

doutk

coutν
cinρ

dinj

ηµi ∈{0, 1}

ξµi ∈{0,±1}

ni(t+ 1)=Θ[
∑
µ

ξµi τµ(t)−ϑi−zi(t)], τµ(t)=concentration of TF µ at t

Different types of logic for TFs:

AND: TF µ ’ON’ if all contributing genes ’ON’

τµ(t) =
∏

j:ηµ
j =1

nj(t)

OR: TF µ ’ON’ if at least one contributing gene ’ON’

τµ(t) =
1

cinµ

∑
j

ηµj nj(t)

Linear vs non-linear threshold dynamics

OR: linear threshold model

ni(t+1)=Θ[
∑
j

∑
µ

ξµi η
µ
j

cinµ︸ ︷︷ ︸
Jij

nj(t)−ϑi−zi(t)]

µ

j

ηµj

i

ξµi

⇒ j
Jij

i

Reminiscent of Neural networks with sparse patterns ξµi =0,±1

Jij =
∑
µ

ξµi ξ
µ
j

cµ
⇒ parallel retrieval of patterns

[Agliari, AA, Barra, Coolen, Tantari, JPA (2013)]

[Sollich, Tantari, AA, Barra, PRL (2014)]

BUT: here ξµi ∈{0,±1} and ηµi ∈{0, 1} ⇒ Jij ̸= Jji

AND: non-linear threshold model

ni(t+ 1) = Θ[
∑
µ

ξµi
∏

j:ηµ
i =1

nj(t)− ϑi − zi(t)]

asymmetric multi-node interactions (as opposed to pairwise)

Linear vs non-linear threshold dynamics

OR: linear threshold model

ni(t+1)=Θ[
∑
j

∑
µ

ξµi η
µ
j

cinµ︸ ︷︷ ︸
Jij

nj(t)−ϑi−zi(t)]

µ

j

ηµj

i

ξµi

⇒ j
Jij

i

Reminiscent of Neural networks with sparse patterns ξµi =0,±1

Jij =
∑
µ

ξµi ξ
µ
j

cµ
⇒ parallel retrieval of patterns

[Agliari, AA, Barra, Coolen, Tantari, JPA (2013)]

[Sollich, Tantari, AA, Barra, PRL (2014)]

BUT: here ξµi ∈{0,±1} and ηµi ∈{0, 1} ⇒ Jij ̸= Jji

AND: non-linear threshold model

ni(t+ 1) = Θ[
∑
µ

ξµi
∏

j:ηµ
i =1

nj(t)− ϑi − zi(t)]

asymmetric multi-node interactions (as opposed to pairwise)

Linear vs non-linear threshold dynamics

OR: linear threshold model

ni(t+1)=Θ[
∑
j

∑
µ

ξµi η
µ
j

cinµ︸ ︷︷ ︸
Jij

nj(t)−ϑi−zi(t)]

µ

j

ηµj

i

ξµi

⇒ j
Jij

i

Reminiscent of Neural networks with sparse patterns ξµi =0,±1

Jij =
∑
µ

ξµi ξ
µ
j

cµ
⇒ parallel retrieval of patterns

[Agliari, AA, Barra, Coolen, Tantari, JPA (2013)]

[Sollich, Tantari, AA, Barra, PRL (2014)]

BUT: here ξµi ∈{0,±1} and ηµi ∈{0, 1} ⇒ Jij ̸= Jji

AND: non-linear threshold model

ni(t+ 1) = Θ[
∑
µ

ξµi
∏

j:ηµ
i =1

nj(t)− ϑi − zi(t)]

asymmetric multi-node interactions (as opposed to pairwise)

Linear vs non-linear threshold dynamics

OR: linear threshold model

ni(t+1)=Θ[
∑
j

∑
µ

ξµi η
µ
j

cinµ︸ ︷︷ ︸
Jij

nj(t)−ϑi−zi(t)]

µ

j

ηµj

i

ξµi

⇒ j
Jij

i

Reminiscent of Neural networks with sparse patterns ξµi =0,±1

Jij =
∑
µ

ξµi ξ
µ
j

cµ
⇒ parallel retrieval of patterns

[Agliari, AA, Barra, Coolen, Tantari, JPA (2013)]

[Sollich, Tantari, AA, Barra, PRL (2014)]

BUT: here ξµi ∈{0,±1} and ηµi ∈{0, 1} ⇒ Jij ̸= Jji

AND: non-linear threshold model

ni(t+ 1) = Θ[
∑
µ

ξµi
∏

j:ηµ
i =1

nj(t)− ϑi − zi(t)]

asymmetric multi-node interactions (as opposed to pairwise)

Linear vs non-linear threshold dynamics

OR: linear threshold model

ni(t+1)=Θ[
∑
j

∑
µ

ξµi η
µ
j

cinµ︸ ︷︷ ︸
Jij

nj(t)−ϑi−zi(t)]

µ

j

ηµj

i

ξµi

⇒ j
Jij

i

Reminiscent of Neural networks with sparse patterns ξµi =0,±1

Jij =
∑
µ

ξµi ξ
µ
j

cµ

⇒ parallel retrieval of patterns

[Agliari, AA, Barra, Coolen, Tantari, JPA (2013)]

[Sollich, Tantari, AA, Barra, PRL (2014)]

BUT: here ξµi ∈{0,±1} and ηµi ∈{0, 1} ⇒ Jij ̸= Jji

AND: non-linear threshold model

ni(t+ 1) = Θ[
∑
µ

ξµi
∏

j:ηµ
i =1

nj(t)− ϑi − zi(t)]

asymmetric multi-node interactions (as opposed to pairwise)

Linear vs non-linear threshold dynamics

OR: linear threshold model

ni(t+1)=Θ[
∑
j

∑
µ

ξµi η
µ
j

cinµ︸ ︷︷ ︸
Jij

nj(t)−ϑi−zi(t)]

µ

j

ηµj

i

ξµi

⇒ j
Jij

i

Reminiscent of Neural networks with sparse patterns ξµi =0,±1

Jij =
∑
µ

ξµi ξ
µ
j

cµ

⇒ parallel retrieval of patterns

[Agliari, AA, Barra, Coolen, Tantari, JPA (2013)]

[Sollich, Tantari, AA, Barra, PRL (2014)]

BUT: here ξµi ∈{0,±1} and ηµi ∈{0, 1} ⇒ Jij ̸= Jji

AND: non-linear threshold model

ni(t+ 1) = Θ[
∑
µ

ξµi
∏

j:ηµ
i =1

nj(t)− ϑi − zi(t)]

asymmetric multi-node interactions (as opposed to pairwise)

Linear vs non-linear threshold dynamics

OR: linear threshold model

ni(t+1)=Θ[
∑
j

∑
µ

ξµi η
µ
j

cinµ︸ ︷︷ ︸
Jij

nj(t)−ϑi−zi(t)]

µ

j

ηµj

i

ξµi

⇒ j
Jij

i

Reminiscent of Neural networks with sparse patterns ξµi =0,±1

Jij =
∑
µ

ξµi ξ
µ
j

cµ
⇒ parallel retrieval of patterns

[Agliari, AA, Barra, Coolen, Tantari, JPA (2013)]

[Sollich, Tantari, AA, Barra, PRL (2014)]

BUT: here ξµi ∈{0,±1} and ηµi ∈{0, 1} ⇒ Jij ̸= Jji

AND: non-linear threshold model

ni(t+ 1) = Θ[
∑
µ

ξµi
∏

j:ηµ
i =1

nj(t)− ϑi − zi(t)]

asymmetric multi-node interactions (as opposed to pairwise)

Linear vs non-linear threshold dynamics

OR: linear threshold model

ni(t+1)=Θ[
∑
j

∑
µ

ξµi η
µ
j

cinµ︸ ︷︷ ︸
Jij

nj(t)−ϑi−zi(t)]

µ

j

ηµj

i

ξµi

⇒ j
Jij

i

Reminiscent of Neural networks with sparse patterns ξµi =0,±1

Jij =
∑
µ

ξµi ξ
µ
j

cµ
⇒ parallel retrieval of patterns

[Agliari, AA, Barra, Coolen, Tantari, JPA (2013)]

[Sollich, Tantari, AA, Barra, PRL (2014)]

BUT: here ξµi ∈{0,±1} and ηµi ∈{0, 1} ⇒ Jij ̸= Jji

AND: non-linear threshold model

ni(t+ 1) = Θ[
∑
µ

ξµi
∏

j:ηµ
i =1

nj(t)− ϑi − zi(t)]

asymmetric multi-node interactions (as opposed to pairwise)

Linear vs non-linear threshold dynamics

OR: linear threshold model

ni(t+1)=Θ[
∑
j

∑
µ

ξµi η
µ
j

cinµ︸ ︷︷ ︸
Jij

nj(t)−ϑi−zi(t)]

µ

j

ηµj

i

ξµi

⇒ j
Jij

i

Reminiscent of Neural networks with sparse patterns ξµi =0,±1

Jij =
∑
µ

ξµi ξ
µ
j

cµ
⇒ parallel retrieval of patterns

[Agliari, AA, Barra, Coolen, Tantari, JPA (2013)]

[Sollich, Tantari, AA, Barra, PRL (2014)]

BUT: here ξµi ∈{0,±1} and ηµi ∈{0, 1} ⇒ Jij ̸= Jji

AND: non-linear threshold model

ni(t+ 1) = Θ[
∑
µ

ξµi
∏

j:ηµ
i =1

nj(t)− ϑi − zi(t)]

asymmetric multi-node interactions (as opposed to pairwise)

Linear vs non-linear threshold dynamics

OR: linear threshold model

ni(t+1)=Θ[
∑
j

∑
µ

ξµi η
µ
j

cinµ︸ ︷︷ ︸
Jij

nj(t)−ϑi−zi(t)]

µ

j

ηµj

i

ξµi

⇒ j
Jij

i

Reminiscent of Neural networks with sparse patterns ξµi =0,±1

Jij =
∑
µ

ξµi ξ
µ
j

cµ
⇒ parallel retrieval of patterns

[Agliari, AA, Barra, Coolen, Tantari, JPA (2013)]

[Sollich, Tantari, AA, Barra, PRL (2014)]

BUT: here ξµi ∈{0,±1} and ηµi ∈{0, 1} ⇒ Jij ̸= Jji

AND: non-linear threshold model

ni(t+ 1) = Θ[
∑
µ

ξµi
∏

j:ηµ
i =1

nj(t)− ϑi − zi(t)]

asymmetric multi-node interactions (as opposed to pairwise)

Outline

1 Motivation

2 Model inspired by neural networks
Model definition
Results

3 Introducing TFs: a bipartite graph model
Model definition
Percolation theory
Dynamics
One-time approximation
Extensions: Multi-node and self-interactions

Percolation

Q: For which model’s parameters can have non-trivial attractors?

A: Noisy finite systems are ergodic ⇒ Giant Component (GC) for
multiplicity of attractors ⇒ Percolation theory

AND:

GC stable if ⟨cin⟩TF PG(d
in = 1) < 1

cin cout

⇒ TFs should be small complexes

GC only stable solution if α⟨cout⟩TF PTF(c
in = 1) > 1

⇒ TFs should regulate sufficiently many genes

OR:

GC only stable option for α⟨cin⟩TF⟨cout⟩TF > 1

TFs indeed small complexes which regulate many genes!

[Hannam,Kühn,AA, JPA (2019); Torrisi, Kühn,AA, JSTAT (2020)]

Percolation

Q: For which model’s parameters can have non-trivial attractors?
A: Noisy finite systems are ergodic ⇒ Giant Component (GC) for
multiplicity of attractors ⇒ Percolation theory

AND:

GC stable if ⟨cin⟩TF PG(d
in = 1) < 1

cin cout

⇒ TFs should be small complexes

GC only stable solution if α⟨cout⟩TF PTF(c
in = 1) > 1

⇒ TFs should regulate sufficiently many genes

OR:

GC only stable option for α⟨cin⟩TF⟨cout⟩TF > 1

TFs indeed small complexes which regulate many genes!

[Hannam,Kühn,AA, JPA (2019); Torrisi, Kühn,AA, JSTAT (2020)]

Percolation

Q: For which model’s parameters can have non-trivial attractors?
A: Noisy finite systems are ergodic ⇒ Giant Component (GC) for
multiplicity of attractors ⇒ Percolation theory

AND:

GC stable if ⟨cin⟩TF PG(d
in = 1) < 1

cin cout

⇒ TFs should be small complexes

GC only stable solution if α⟨cout⟩TF PTF(c
in = 1) > 1

⇒ TFs should regulate sufficiently many genes

OR:

GC only stable option for α⟨cin⟩TF⟨cout⟩TF > 1

TFs indeed small complexes which regulate many genes!

[Hannam,Kühn,AA, JPA (2019); Torrisi, Kühn,AA, JSTAT (2020)]

Percolation

Q: For which model’s parameters can have non-trivial attractors?
A: Noisy finite systems are ergodic ⇒ Giant Component (GC) for
multiplicity of attractors ⇒ Percolation theory

AND:

GC stable if ⟨cin⟩TF PG(d
in = 1) < 1

cin

cout

⇒ TFs should be small complexes

GC only stable solution if α⟨cout⟩TF PTF(c
in = 1) > 1

⇒ TFs should regulate sufficiently many genes

OR:

GC only stable option for α⟨cin⟩TF⟨cout⟩TF > 1

TFs indeed small complexes which regulate many genes!

[Hannam,Kühn,AA, JPA (2019); Torrisi, Kühn,AA, JSTAT (2020)]

Percolation

Q: For which model’s parameters can have non-trivial attractors?
A: Noisy finite systems are ergodic ⇒ Giant Component (GC) for
multiplicity of attractors ⇒ Percolation theory

AND:

GC stable if ⟨cin⟩TF PG(d
in = 1) < 1

cin

cout

⇒ TFs should be small complexes

GC only stable solution if α⟨cout⟩TF PTF(c
in = 1) > 1

⇒ TFs should regulate sufficiently many genes

OR:

GC only stable option for α⟨cin⟩TF⟨cout⟩TF > 1

TFs indeed small complexes which regulate many genes!

[Hannam,Kühn,AA, JPA (2019); Torrisi, Kühn,AA, JSTAT (2020)]

Percolation

Q: For which model’s parameters can have non-trivial attractors?
A: Noisy finite systems are ergodic ⇒ Giant Component (GC) for
multiplicity of attractors ⇒ Percolation theory

AND:

GC stable if ⟨cin⟩TF PG(d
in = 1) < 1

cin cout⇒ TFs should be small complexes

GC only stable solution if α⟨cout⟩TF PTF(c
in = 1) > 1

⇒ TFs should regulate sufficiently many genes

OR:

GC only stable option for α⟨cin⟩TF⟨cout⟩TF > 1

TFs indeed small complexes which regulate many genes!

[Hannam,Kühn,AA, JPA (2019); Torrisi, Kühn,AA, JSTAT (2020)]

Percolation

Q: For which model’s parameters can have non-trivial attractors?
A: Noisy finite systems are ergodic ⇒ Giant Component (GC) for
multiplicity of attractors ⇒ Percolation theory

AND:

GC stable if ⟨cin⟩TF PG(d
in = 1) < 1

cin cout⇒ TFs should be small complexes

GC only stable solution if α⟨cout⟩TF PTF(c
in = 1) > 1

⇒ TFs should regulate sufficiently many genes

OR:

GC only stable option for α⟨cin⟩TF⟨cout⟩TF > 1

TFs indeed small complexes which regulate many genes!

[Hannam,Kühn,AA, JPA (2019); Torrisi, Kühn,AA, JSTAT (2020)]

Percolation

Q: For which model’s parameters can have non-trivial attractors?
A: Noisy finite systems are ergodic ⇒ Giant Component (GC) for
multiplicity of attractors ⇒ Percolation theory

AND:

GC stable if ⟨cin⟩TF PG(d
in = 1) < 1

cin cout⇒ TFs should be small complexes

GC only stable solution if α⟨cout⟩TF PTF(c
in = 1) > 1

⇒ TFs should regulate sufficiently many genes

OR:

GC only stable option for α⟨cin⟩TF⟨cout⟩TF > 1

TFs indeed small complexes which regulate many genes!

[Hannam,Kühn,AA, JPA (2019); Torrisi, Kühn,AA, JSTAT (2020)]

Percolation

Q: For which model’s parameters can have non-trivial attractors?
A: Noisy finite systems are ergodic ⇒ Giant Component (GC) for
multiplicity of attractors ⇒ Percolation theory

AND:

GC stable if ⟨cin⟩TF PG(d
in = 1) < 1

cin cout⇒ TFs should be small complexes

GC only stable solution if α⟨cout⟩TF PTF(c
in = 1) > 1

⇒ TFs should regulate sufficiently many genes

OR:

GC only stable option for α⟨cin⟩TF⟨cout⟩TF > 1

TFs indeed small complexes which regulate many genes!

[Hannam,Kühn,AA, JPA (2019); Torrisi, Kühn,AA, JSTAT (2020)]

Outline

1 Motivation

2 Model inspired by neural networks
Model definition
Results

3 Introducing TFs: a bipartite graph model
Model definition
Percolation theory
Dynamics
One-time approximation
Extensions: Multi-node and self-interactions

Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i)− ϑi)⟩n∂i
, t ⟨. . .⟩n∂i

, t =
∑
n∂i

. . . P (n∂i , t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t) =
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj

Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i)− ϑi)⟩n∂i
, t ⟨. . .⟩n∂i

, t =
∑
n∂i

. . . P (n∂i , t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t) =
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj

Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i)− ϑi)⟩n∂i
, t ⟨. . .⟩n∂i

, t =
∑
n∂i

. . . P (n∂i , t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t) =
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj

Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i)− ϑi)⟩n∂i
, t ⟨. . .⟩n∂i

, t =
∑
n∂i

. . . P (n∂i , t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t) =
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj

Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i
)− ϑi)⟩n∂i

, t ⟨. . .⟩n∂i
, t =

∑
n∂i

. . . P (n∂i
, t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t) =
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj

Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i
)− ϑi)⟩n∂i

, t ⟨. . .⟩n∂i
, t =

∑
n∂i

. . . P (n∂i
, t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t) =
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj

Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i
)− ϑi)⟩n∂i

, t ⟨. . .⟩n∂i
, t =

∑
n∂i

. . . P (n∂i
, t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t) =
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj

Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i
)− ϑi)⟩n∂i

, t ⟨. . .⟩n∂i
, t =

∑
n∂i

. . . P (n∂i
, t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t) =
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj

Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i
)− ϑi)⟩n∂i

, t ⟨. . .⟩n∂i
, t =

∑
n∂i

. . . P (n∂i
, t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t) =
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj

Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i
)− ϑi)⟩n∂i

, t ⟨. . .⟩n∂i
, t =

∑
n∂i

. . . P (n∂i
, t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t) =
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj

Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i
)− ϑi)⟩n∂i

, t ⟨. . .⟩n∂i
, t =

∑
n∂i

. . . P (n∂i
, t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t)

=
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj

Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i
)− ϑi)⟩n∂i

, t ⟨. . .⟩n∂i
, t =

∑
n∂i

. . . P (n∂i
, t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t)

=
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj

Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i
)− ϑi)⟩n∂i

, t ⟨. . .⟩n∂i
, t =

∑
n∂i

. . . P (n∂i
, t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t)

=
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj

Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i
)− ϑi)⟩n∂i

, t ⟨. . .⟩n∂i
, t =

∑
n∂i

. . . P (n∂i
, t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t)

=
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj

Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i
)− ϑi)⟩n∂i

, t ⟨. . .⟩n∂i
, t =

∑
n∂i

. . . P (n∂i
, t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t)

=
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj

Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i
)− ϑi)⟩n∂i

, t ⟨. . .⟩n∂i
, t =

∑
n∂i

. . . P (n∂i
, t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t) =
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj

Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i
)− ϑi)⟩n∂i

, t ⟨. . .⟩n∂i
, t =

∑
n∂i

. . . P (n∂i
, t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t) =
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj

Dynamic programming

Solve iteratively: t= 0, 1, . . . BUT exponential complexity: 2|∂i|

For binary Jij = ±J : O(
∑

i 2
|∂i|) ⇒ O(

∑
i |∂i|2)

via Dynamic programming

[Torrisi, AA, Kühn, PRE (2021)] https://github.com/g-torr/

Power-law: p(k) ∼ γk−γ−1, γ=2.81; N=2·105, kmax = 800

Dynamics: Pi(t) vs i, t

0 50000 100000 150000

sorted node index

0

2

4

6

8

10

it
er

at
io

n

0.2

0.4

0.6

0.8

1.0

P

Stationarity: Π(P)=N−1
∑

iδ(P−Pi)

0.0 0.2 0.4 0.6 0.8 1.0

PMC , P

0.5

1.0

1.5

2.0

Π
(·)

cavity

MC

Dynamic programming

Solve iteratively: t= 0, 1, . . . BUT exponential complexity: 2|∂i|

For binary Jij = ±J : O(
∑

i 2
|∂i|) ⇒ O(

∑
i |∂i|2)

via Dynamic programming

[Torrisi, AA, Kühn, PRE (2021)] https://github.com/g-torr/

Power-law: p(k) ∼ γk−γ−1, γ=2.81; N=2·105, kmax = 800

Dynamics: Pi(t) vs i, t

0 50000 100000 150000

sorted node index

0

2

4

6

8

10

it
er

at
io

n

0.2

0.4

0.6

0.8

1.0

P

Stationarity: Π(P)=N−1
∑

iδ(P−Pi)

0.0 0.2 0.4 0.6 0.8 1.0

PMC , P

0.5

1.0

1.5

2.0

Π
(·)

cavity

MC

Dynamic programming

Solve iteratively: t= 0, 1, . . . BUT exponential complexity: 2|∂i|

For binary Jij = ±J : O(
∑

i 2
|∂i|) ⇒ O(

∑
i |∂i|2)

via Dynamic programming

[Torrisi, AA, Kühn, PRE (2021)] https://github.com/g-torr/

Power-law: p(k) ∼ γk−γ−1, γ=2.81; N=2·105, kmax = 800

Dynamics: Pi(t) vs i, t

0 50000 100000 150000

sorted node index

0

2

4

6

8

10

it
er

at
io

n

0.2

0.4

0.6

0.8

1.0

P

Stationarity: Π(P)=N−1
∑

iδ(P−Pi)

0.0 0.2 0.4 0.6 0.8 1.0

PMC , P

0.5

1.0

1.5

2.0

Π
(·)

cavity

MC

Dynamic programming

Solve iteratively: t= 0, 1, . . . BUT exponential complexity: 2|∂i|

For binary Jij = ±J : O(
∑

i 2
|∂i|) ⇒ O(

∑
i |∂i|2)

via Dynamic programming

[Torrisi, AA, Kühn, PRE (2021)] https://github.com/g-torr/

Power-law: p(k) ∼ γk−γ−1, γ=2.81; N=2·105, kmax = 800

Dynamics: Pi(t) vs i, t

0 50000 100000 150000

sorted node index

0

2

4

6

8

10

it
er

at
io

n

0.2

0.4

0.6

0.8

1.0

P

Stationarity: Π(P)=N−1
∑

iδ(P−Pi)

0.0 0.2 0.4 0.6 0.8 1.0

PMC , P

0.5

1.0

1.5

2.0

Π
(·)

cavity

MC

Dynamic programming

Solve iteratively: t= 0, 1, . . . BUT exponential complexity: 2|∂i|

For binary Jij = ±J : O(
∑

i 2
|∂i|) ⇒ O(

∑
i |∂i|2)

via Dynamic programming

[Torrisi, AA, Kühn, PRE (2021)] https://github.com/g-torr/

Power-law: p(k) ∼ γk−γ−1, γ=2.81; N=2·105, kmax = 800

Dynamics: Pi(t) vs i, t

0 50000 100000 150000

sorted node index

0

2

4

6

8

10

it
er

at
io

n

0.2

0.4

0.6

0.8

1.0

P

Stationarity: Π(P)=N−1
∑

iδ(P−Pi)

0.0 0.2 0.4 0.6 0.8 1.0

PMC , P

0.5

1.0

1.5

2.0

Π
(·)

cavity

MC

Dynamic programming

Solve iteratively: t= 0, 1, . . . BUT exponential complexity: 2|∂i|

For binary Jij = ±J : O(
∑

i 2
|∂i|) ⇒ O(

∑
i |∂i|2)

via Dynamic programming

[Torrisi, AA, Kühn, PRE (2021)] https://github.com/g-torr/

Power-law: p(k) ∼ γk−γ−1, γ=2.81; N=2·105, kmax = 800

Dynamics: Pi(t) vs i, t

0 50000 100000 150000

sorted node index

0

2

4

6

8

10

it
er

at
io

n

0.2

0.4

0.6

0.8

1.0

P

Stationarity: Π(P)=N−1
∑

iδ(P−Pi)

0.0 0.2 0.4 0.6 0.8 1.0

PMC , P

0.5

1.0

1.5

2.0

Π
(·)

cavity

MC

Dynamic programming

Solve iteratively: t= 0, 1, . . . BUT exponential complexity: 2|∂i|

For binary Jij = ±J : O(
∑

i 2
|∂i|) ⇒ O(

∑
i |∂i|2)

via Dynamic programming

[Torrisi, AA, Kühn, PRE (2021)] https://github.com/g-torr/

Power-law: p(k) ∼ γk−γ−1, γ=2.81; N=2·105, kmax = 800

Dynamics: Pi(t) vs i, t

0 50000 100000 150000

sorted node index

0

2

4

6

8

10

it
er

at
io

n

0.2

0.4

0.6

0.8

1.0

P

Stationarity: Π(P)=N−1
∑

iδ(P−Pi)

0.0 0.2 0.4 0.6 0.8 1.0

PMC , P

0.5

1.0

1.5

2.0

Π
(·)

cavity

MC

Dynamic programming

Solve iteratively: t= 0, 1, . . . BUT exponential complexity: 2|∂i|

For binary Jij = ±J : O(
∑

i 2
|∂i|) ⇒ O(

∑
i |∂i|2)

via Dynamic programming

[Torrisi, AA, Kühn, PRE (2021)] https://github.com/g-torr/

Power-law: p(k) ∼ γk−γ−1, γ=2.81; N=2·105, kmax = 800

Dynamics: Pi(t) vs i, t

0 50000 100000 150000

sorted node index

0

2

4

6

8

10

it
er

at
io

n

0.2

0.4

0.6

0.8

1.0

P

Stationarity: Π(P)=N−1
∑

iδ(P−Pi)

0.0 0.2 0.4 0.6 0.8 1.0

PMC , P

0.5

1.0

1.5

2.0

Π
(·)

cavity

MC

Dynamic programming

Solve iteratively: t= 0, 1, . . . BUT exponential complexity: 2|∂i|

For binary Jij = ±J : O(
∑

i 2
|∂i|) ⇒ O(

∑
i |∂i|2)

via Dynamic programming

[Torrisi, AA, Kühn, PRE (2021)] https://github.com/g-torr/

Power-law: p(k) ∼ γk−γ−1, γ=2.81; N=2·105, kmax = 800

Dynamics: Pi(t) vs i, t

0 50000 100000 150000

sorted node index

0

2

4

6

8

10

it
er

at
io

n

0.2

0.4

0.6

0.8

1.0

P

Stationarity: Π(P)=N−1
∑

iδ(P−Pi)

0.0 0.2 0.4 0.6 0.8 1.0

PMC , P

0.5

1.0

1.5

2.0

Π
(·)

cavity

MC

Results P (Jij ̸=0) = ηδ(Jij − J) + (1−η)δ(Jij + J), η = 0.62

Multimodal distribution ⇒ node heterogeneities

Let ki = 1, ∂i = {j}, Pj = P :

Pi = PΦT (±J − ϑ) + (1− P)ΦT (−ϑ) ≡ ρ±(P)

e.g. in FM chains Pi+1=ρ+(Pi) ⇒ p∗ = ρ+(p
∗)

Note: in fully asymmetric nets only one attractor [Torrisi,AA,Kühn, PRE (2021)]

Results P (Jij ̸=0) = ηδ(Jij − J) + (1−η)δ(Jij + J), η = 0.62

Multimodal distribution ⇒ node heterogeneities

Let ki = 1, ∂i = {j}, Pj = P :

Pi = PΦT (±J − ϑ) + (1− P)ΦT (−ϑ) ≡ ρ±(P)

e.g. in FM chains Pi+1=ρ+(Pi) ⇒ p∗ = ρ+(p
∗)

Note: in fully asymmetric nets only one attractor [Torrisi,AA,Kühn, PRE (2021)]

Results P (Jij ̸=0) = ηδ(Jij − J) + (1−η)δ(Jij + J), η = 0.62

Multimodal distribution ⇒ node heterogeneities

Let ki = 1, ∂i = {j}, Pj = P :

Pi = PΦT (±J − ϑ) + (1− P)ΦT (−ϑ) ≡ ρ±(P)

e.g. in FM chains Pi+1=ρ+(Pi) ⇒ p∗ = ρ+(p
∗)

Note: in fully asymmetric nets only one attractor [Torrisi,AA,Kühn, PRE (2021)]

Results P (Jij ̸=0) = ηδ(Jij − J) + (1−η)δ(Jij + J), η = 0.62

Multimodal distribution ⇒ node heterogeneities

Let ki = 1, ∂i = {j}, Pj = P :

Pi = PΦT (±J − ϑ) + (1− P)ΦT (−ϑ) ≡ ρ±(P)

e.g. in FM chains Pi+1=ρ+(Pi) ⇒ p∗ = ρ+(p
∗)

Note: in fully asymmetric nets only one attractor [Torrisi,AA,Kühn, PRE (2021)]

Results P (Jij ̸=0) = ηδ(Jij − J) + (1−η)δ(Jij + J), η = 0.62

Multimodal distribution ⇒ node heterogeneities

Let ki = 1, ∂i = {j}, Pj = P :

Pi = PΦT (±J − ϑ) + (1− P)ΦT (−ϑ) ≡ ρ±(P)

e.g. in FM chains Pi+1=ρ+(Pi) ⇒ p∗ = ρ+(p
∗)

Note: in fully asymmetric nets only one attractor [Torrisi,AA,Kühn, PRE (2021)]

Results P (Jij ̸=0) = ηδ(Jij − J) + (1−η)δ(Jij + J), η = 0.62

Multimodal distribution ⇒ node heterogeneities

Let ki = 1, ∂i = {j}, Pj = P :

Pi = PΦT (±J − ϑ) + (1− P)ΦT (−ϑ) ≡ ρ±(P)

e.g. in FM chains Pi+1=ρ+(Pi) ⇒ p∗ = ρ+(p
∗)

Note: in fully asymmetric nets only one attractor

[Torrisi,AA,Kühn, PRE (2021)]

Results P (Jij ̸=0) = ηδ(Jij − J) + (1−η)δ(Jij + J), η = 0.62

Multimodal distribution ⇒ node heterogeneities

Let ki = 1, ∂i = {j}, Pj = P :

Pi = PΦT (±J − ϑ) + (1− P)ΦT (−ϑ) ≡ ρ±(P)

e.g. in FM chains Pi+1=ρ+(Pi) ⇒ p∗ = ρ+(p
∗)

Note: in fully asymmetric nets only one attractor [Torrisi,AA,Kühn, PRE (2021)]

Outline

1 Motivation

2 Model inspired by neural networks
Model definition
Results

3 Introducing TFs: a bipartite graph model
Model definition
Percolation theory
Dynamics
One-time approximation
Extensions: Multi-node and self-interactions

One-time approximation

With bi-directional links P (i)(n∂i , t) ̸=
∏

j∈∂i P
(i)(nj , t) BUT

P (i)(n0...T
∂i |n0...T

i)=
∏
j∈∂i

P
(i)
j (n0...T

j |n0...T
i)

Have to work with trajectories

Pi(n
0,...,t
i) =

∑
n0...T

∂i

(. . .)
∏
j∈∂i

P
(i)
j (n0...T

j |n0...T
i)

Additional complexity in time.. One-time step approximation [Neri Bollé 2009]

P (i)(n0...T
j |n0...T

i) ≃ P
(i)
j (n0

j)

t∏
s=1

P
(i)
j (ns

j |ns−1
i)

⇒ recursion for cavity marginals P
(ℓ)
i (nt

i|nt−1
ℓ) in terms of P

(i)
j (nt−1

j |nt−2
i)

Similar equation for Pi(n
t
i) .. Both benefit from dynamic programming!

One-time approximation

With bi-directional links P (i)(n∂i , t) ̸=
∏

j∈∂i P
(i)(nj , t) BUT

P (i)(n0...T
∂i |n0...T

i)=
∏
j∈∂i

P
(i)
j (n0...T

j |n0...T
i)

Have to work with trajectories

Pi(n
0,...,t
i) =

∑
n0...T

∂i

(. . .)
∏
j∈∂i

P
(i)
j (n0...T

j |n0...T
i)

Additional complexity in time.. One-time step approximation [Neri Bollé 2009]

P (i)(n0...T
j |n0...T

i) ≃ P
(i)
j (n0

j)

t∏
s=1

P
(i)
j (ns

j |ns−1
i)

⇒ recursion for cavity marginals P
(ℓ)
i (nt

i|nt−1
ℓ) in terms of P

(i)
j (nt−1

j |nt−2
i)

Similar equation for Pi(n
t
i) .. Both benefit from dynamic programming!

One-time approximation

With bi-directional links P (i)(n∂i , t) ̸=
∏

j∈∂i P
(i)(nj , t) BUT

P (i)(n0...T
∂i |n0...T

i)=
∏
j∈∂i

P
(i)
j (n0...T

j |n0...T
i)

Have to work with trajectories

Pi(n
0,...,t
i) =

∑
n0...T

∂i

(. . .)
∏
j∈∂i

P
(i)
j (n0...T

j |n0...T
i)

Additional complexity in time.. One-time step approximation [Neri Bollé 2009]

P (i)(n0...T
j |n0...T

i) ≃ P
(i)
j (n0

j)

t∏
s=1

P
(i)
j (ns

j |ns−1
i)

⇒ recursion for cavity marginals P
(ℓ)
i (nt

i|nt−1
ℓ) in terms of P

(i)
j (nt−1

j |nt−2
i)

Similar equation for Pi(n
t
i) .. Both benefit from dynamic programming!

One-time approximation

With bi-directional links P (i)(n∂i , t) ̸=
∏

j∈∂i P
(i)(nj , t) BUT

P (i)(n0...T
∂i |n0...T

i)=
∏
j∈∂i

P
(i)
j (n0...T

j |n0...T
i)

Have to work with trajectories

Pi(n
0,...,t
i) =

∑
n0...T

∂i

(. . .)
∏
j∈∂i

P
(i)
j (n0...T

j |n0...T
i)

Additional complexity in time.. One-time step approximation [Neri Bollé 2009]

P (i)(n0...T
j |n0...T

i) ≃ P
(i)
j (n0

j)

t∏
s=1

P
(i)
j (ns

j |ns−1
i)

⇒ recursion for cavity marginals P
(ℓ)
i (nt

i|nt−1
ℓ) in terms of P

(i)
j (nt−1

j |nt−2
i)

Similar equation for Pi(n
t
i) .. Both benefit from dynamic programming!

One-time approximation

With bi-directional links P (i)(n∂i , t) ̸=
∏

j∈∂i P
(i)(nj , t) BUT

P (i)(n0...T
∂i |n0...T

i)=
∏
j∈∂i

P
(i)
j (n0...T

j |n0...T
i)

Have to work with trajectories

Pi(n
0,...,t
i) =

∑
n0...T

∂i

(. . .)
∏
j∈∂i

P
(i)
j (n0...T

j |n0...T
i)

Additional complexity in time.. One-time step approximation [Neri Bollé 2009]

P (i)(n0...T
j |n0...T

i) ≃ P
(i)
j (n0

j)

t∏
s=1

P
(i)
j (ns

j |ns−1
i)

⇒ recursion for cavity marginals P
(ℓ)
i (nt

i|nt−1
ℓ) in terms of P

(i)
j (nt−1

j |nt−2
i)

Similar equation for Pi(n
t
i) .. Both benefit from dynamic programming!

One-time approximation

With bi-directional links P (i)(n∂i , t) ̸=
∏

j∈∂i P
(i)(nj , t) BUT

P (i)(n0...T
∂i |n0...T

i)=
∏
j∈∂i

P
(i)
j (n0...T

j |n0...T
i)

Have to work with trajectories

Pi(n
0,...,t
i) =

∑
n0...T

∂i

(. . .)
∏
j∈∂i

P
(i)
j (n0...T

j |n0...T
i)

Additional complexity in time.. One-time step approximation [Neri Bollé 2009]

P (i)(n0...T
j |n0...T

i) ≃ P
(i)
j (n0

j)

t∏
s=1

P
(i)
j (ns

j |ns−1
i)

⇒ recursion for cavity marginals P
(ℓ)
i (nt

i|nt−1
ℓ) in terms of P

(i)
j (nt−1

j |nt−2
i)

Similar equation for Pi(n
t
i) .. Both benefit from dynamic programming!

Symmetry breaking

Consider (i) Jij=Jji; (ii) Jij=−Jji; (iii) P (Jij ,Jji)=P (Jij)P (Jji)

0 1 2 3 4 5

T

0.40

0.45

0.50

0.55

0.60

0.65

〈P
〉

MC

OTA

⟨P ⟩ = N−1
∑

i Pi

θ = 0

⟨Jij⟩=0

⇒ bias towards activation or quiescence ⇒ Symmetry breaking

[G Torrisi, R Kühn, AA, JSTAT (2022)]

Symmetry breaking

Consider (i) Jij=Jji; (ii) Jij=−Jji; (iii) P (Jij ,Jji)=P (Jij)P (Jji)

0 1 2 3 4 5

T

0.40

0.45

0.50

0.55

0.60

0.65

〈P
〉

MC

OTA

⟨P ⟩ = N−1
∑

i Pi

θ = 0

⟨Jij⟩=0

⇒ bias towards activation or quiescence ⇒ Symmetry breaking

[G Torrisi, R Kühn, AA, JSTAT (2022)]

Symmetry breaking

Consider (i) Jij=Jji; (ii) Jij=−Jji; (iii) P (Jij ,Jji)=P (Jij)P (Jji)

0 1 2 3 4 5

T

0.40

0.45

0.50

0.55

0.60

0.65

〈P
〉

MC

OTA

⟨P ⟩ = N−1
∑

i Pi

θ = 0

⟨Jij⟩=0

⇒ bias towards activation or quiescence ⇒ Symmetry breaking

[G Torrisi, R Kühn, AA, JSTAT (2022)]

Symmetry breaking

Consider (i) Jij=Jji; (ii) Jij=−Jji; (iii) P (Jij ,Jji)=P (Jij)P (Jji)

0 1 2 3 4 5

T

0.40

0.45

0.50

0.55

0.60

0.65

〈P
〉

MC

OTA

⟨P ⟩ = N−1
∑

i Pi

θ = 0

⟨Jij⟩=0

⇒ bias towards activation or quiescence ⇒ Symmetry breaking

[G Torrisi, R Kühn, AA, JSTAT (2022)]

Symmetry breaking

Consider (i) Jij=Jji; (ii) Jij=−Jji; (iii) P (Jij ,Jji)=P (Jij)P (Jji)

0 1 2 3 4 5

T

0.40

0.45

0.50

0.55

0.60

0.65

〈P
〉

MC

OTA

⟨P ⟩ = N−1
∑

i Pi

θ = 0

⟨Jij⟩=0

⇒ bias towards activation or quiescence ⇒ Symmetry breaking

[G Torrisi, R Kühn, AA, JSTAT (2022)]

Symmetry breaking

Consider (i) Jij=Jji; (ii) Jij=−Jji; (iii) P (Jij ,Jji)=P (Jij)P (Jji)

0 1 2 3 4 5

T

0.40

0.45

0.50

0.55

0.60

0.65

〈P
〉

MC

OTA

⟨P ⟩ = N−1
∑

i Pi

θ = 0

⟨Jij⟩=0

⇒ bias towards activation or quiescence ⇒ Symmetry breaking

[G Torrisi, R Kühn, AA, JSTAT (2022)]

Outline

1 Motivation

2 Model inspired by neural networks
Model definition
Results

3 Introducing TFs: a bipartite graph model
Model definition
Percolation theory
Dynamics
One-time approximation
Extensions: Multi-node and self-interactions

Extensions: Multi-node and self-interactions

Bi-directional links in bipartite graphs:

P (ξµi ̸=0|ηµi =1)=p

µ

ηµi

i

ξµi ⇒
Jii

i

OR: ni(t+ 1) = Θ[
∑

j Jijnj(t)− ϑi − zi(t)], Jii ̸= 0 X

Map: N nodes and self-interactions ⇒ 2N and bi-directional links

... evolving according to linear threshold model V

AND: τµ(t) =
∏

j:ηµj =1 nj(t) ⇒ τµ(t) = Θ[
∑

j η
µ
j nj(t)− cµ + ϵ]

N + P nodes, bi-directional links, linear threshold model V

Extensions: Multi-node and self-interactions

Bi-directional links in bipartite graphs:

P (ξµi ̸=0|ηµi =1)=p

µ

ηµi

i

ξµi ⇒
Jii

i

OR: ni(t+ 1) = Θ[
∑

j Jijnj(t)− ϑi − zi(t)], Jii ̸= 0 X

Map: N nodes and self-interactions ⇒ 2N and bi-directional links

... evolving according to linear threshold model V

AND: τµ(t) =
∏

j:ηµj =1 nj(t) ⇒ τµ(t) = Θ[
∑

j η
µ
j nj(t)− cµ + ϵ]

N + P nodes, bi-directional links, linear threshold model V

Extensions: Multi-node and self-interactions

Bi-directional links in bipartite graphs:

P (ξµi ̸=0|ηµi =1)=p

µ

ηµi

i

ξµi ⇒
Jii

i

OR: ni(t+ 1) = Θ[
∑

j Jijnj(t)− ϑi − zi(t)], Jii ̸= 0 X

Map: N nodes and self-interactions ⇒ 2N and bi-directional links

... evolving according to linear threshold model V

AND: τµ(t) =
∏

j:ηµj =1 nj(t) ⇒ τµ(t) = Θ[
∑

j η
µ
j nj(t)− cµ + ϵ]

N + P nodes, bi-directional links, linear threshold model V

Extensions: Multi-node and self-interactions

Bi-directional links in bipartite graphs:

P (ξµi ̸=0|ηµi =1)=p

µ

ηµi

i

ξµi ⇒
Jii

i

OR: ni(t+ 1) = Θ[
∑

j Jijnj(t)− ϑi − zi(t)], Jii ̸= 0 X

Map: N nodes and self-interactions ⇒ 2N and bi-directional links

... evolving according to linear threshold model V

AND: τµ(t) =
∏

j:ηµj =1 nj(t) ⇒ τµ(t) = Θ[
∑

j η
µ
j nj(t)− cµ + ϵ]

N + P nodes, bi-directional links, linear threshold model V

Extensions: Multi-node and self-interactions

Bi-directional links in bipartite graphs:

P (ξµi ̸=0|ηµi =1)=p

µ

ηµi

i

ξµi ⇒
Jii

i

OR: ni(t+ 1) = Θ[
∑

j Jijnj(t)− ϑi − zi(t)], Jii ̸= 0 X

Map: N nodes and self-interactions ⇒ 2N and bi-directional links

... evolving according to linear threshold model V

AND: τµ(t) =
∏

j:ηµj =1 nj(t) ⇒ τµ(t) = Θ[
∑

j η
µ
j nj(t)− cµ + ϵ]

N + P nodes, bi-directional links, linear threshold model V

Extensions: Multi-node and self-interactions

Bi-directional links in bipartite graphs:

P (ξµi ̸=0|ηµi =1)=p

µ

ηµi

i

ξµi ⇒
Jii

i

OR: ni(t+ 1) = Θ[
∑

j Jijnj(t)− ϑi − zi(t)], Jii ̸= 0

X

Map: N nodes and self-interactions ⇒ 2N and bi-directional links

... evolving according to linear threshold model V

AND: τµ(t) =
∏

j:ηµj =1 nj(t) ⇒ τµ(t) = Θ[
∑

j η
µ
j nj(t)− cµ + ϵ]

N + P nodes, bi-directional links, linear threshold model V

Extensions: Multi-node and self-interactions

Bi-directional links in bipartite graphs:

P (ξµi ̸=0|ηµi =1)=p

µ

ηµi

i

ξµi ⇒
Jii

i

OR: ni(t+ 1) = Θ[
∑

j Jijnj(t)− ϑi − zi(t)], Jii ̸= 0

X

Map: N nodes and self-interactions ⇒ 2N and bi-directional links

... evolving according to linear threshold model V

AND: τµ(t) =
∏

j:ηµj =1 nj(t) ⇒ τµ(t) = Θ[
∑

j η
µ
j nj(t)− cµ + ϵ]

N + P nodes, bi-directional links, linear threshold model V

Extensions: Multi-node and self-interactions

Bi-directional links in bipartite graphs:

P (ξµi ̸=0|ηµi =1)=p

µ

ηµi

i

ξµi ⇒
Jii

i

OR: ni(t+ 1) = Θ[
∑

j Jijnj(t)− ϑi − zi(t)], Jii ̸= 0 X

Map: N nodes and self-interactions ⇒ 2N and bi-directional links

... evolving according to linear threshold model V

AND: τµ(t) =
∏

j:ηµj =1 nj(t) ⇒ τµ(t) = Θ[
∑

j η
µ
j nj(t)− cµ + ϵ]

N + P nodes, bi-directional links, linear threshold model V

Extensions: Multi-node and self-interactions

Bi-directional links in bipartite graphs:

P (ξµi ̸=0|ηµi =1)=p

µ

ηµi

i

ξµi ⇒
Jii

i

OR: ni(t+ 1) = Θ[
∑

j Jijnj(t)− ϑi − zi(t)], Jii ̸= 0 X

Map: N nodes and self-interactions ⇒ 2N and bi-directional links

... evolving according to linear threshold model V

AND: τµ(t) =
∏

j:ηµj =1 nj(t) ⇒ τµ(t) = Θ[
∑

j η
µ
j nj(t)− cµ + ϵ]

N + P nodes, bi-directional links, linear threshold model V

Extensions: Multi-node and self-interactions

Bi-directional links in bipartite graphs:

P (ξµi ̸=0|ηµi =1)=p

µ

ηµi

i

ξµi ⇒
Jii

i

OR: ni(t+ 1) = Θ[
∑

j Jijnj(t)− ϑi − zi(t)], Jii ̸= 0 X

Map: N nodes and self-interactions ⇒ 2N and bi-directional links

... evolving according to linear threshold model V

AND: τµ(t) =
∏

j:ηµj =1 nj(t) ⇒ τµ(t) = Θ[
∑

j η
µ
j nj(t)− cµ + ϵ]

N + P nodes, bi-directional links, linear threshold model V

Extensions: Multi-node and self-interactions

Bi-directional links in bipartite graphs:

P (ξµi ̸=0|ηµi =1)=p

µ

ηµi

i

ξµi ⇒
Jii

i

OR: ni(t+ 1) = Θ[
∑

j Jijnj(t)− ϑi − zi(t)], Jii ̸= 0 X

Map: N nodes and self-interactions ⇒ 2N and bi-directional links

... evolving according to linear threshold model V

AND: τµ(t) =
∏

j:ηµj =1 nj(t) ⇒ τµ(t) = Θ[
∑

j η
µ
j nj(t)− cµ + ϵ]

N + P nodes, bi-directional links, linear threshold model V

Extensions: Multi-node and self-interactions

Bi-directional links in bipartite graphs:

P (ξµi ̸=0|ηµi =1)=p

µ

ηµi

i

ξµi ⇒
Jii

i

OR: ni(t+ 1) = Θ[
∑

j Jijnj(t)− ϑi − zi(t)], Jii ̸= 0 X

Map: N nodes and self-interactions ⇒ 2N and bi-directional links

... evolving according to linear threshold model V

AND: τµ(t) =
∏

j:ηµj =1 nj(t) ⇒ τµ(t) = Θ[
∑

j η
µ
j nj(t)− cµ + ϵ]

N + P nodes, bi-directional links, linear threshold model V

Extensions: Multi-node and self-interactions

Bi-directional links in bipartite graphs:

P (ξµi ̸=0|ηµi =1)=p

µ

ηµi

i

ξµi ⇒
Jii

i

OR: ni(t+ 1) = Θ[
∑

j Jijnj(t)− ϑi − zi(t)], Jii ̸= 0 X

Map: N nodes and self-interactions ⇒ 2N and bi-directional links

... evolving according to linear threshold model V

AND: τµ(t) =
∏

j:ηµj =1 nj(t) ⇒ τµ(t) = Θ[
∑

j η
µ
j nj(t)− cµ + ϵ]

N + P nodes, bi-directional links, linear threshold model V

Extensions: Multi-node and self-interactions

Bi-directional links in bipartite graphs:

P (ξµi ̸=0|ηµi =1)=p

µ

ηµi

i

ξµi ⇒
Jii

i

OR: ni(t+ 1) = Θ[
∑

j Jijnj(t)− ϑi − zi(t)], Jii ̸= 0 X

Map: N nodes and self-interactions ⇒ 2N and bi-directional links

... evolving according to linear threshold model V

AND: τµ(t) =
∏

j:ηµj =1 nj(t) ⇒ τµ(t) = Θ[
∑

j η
µ
j nj(t)− cµ + ϵ]

N + P nodes, bi-directional links, linear threshold model V

Extensions: Multi-node and self-interactions

p = P (ξµi ̸= 0|ηµi = 1) ⇒ at low T multiplicity of attractors

Similarity of attractors: AND (left), OR (right)

Self-regulation crucial for multiplicity of attractors

Cooperativity promotes diversity

Both common features of GRNs ⇒ Sustain multi-cellular life?

[Hurry, Mozeika, AA, JPA (2022)]

Extensions: Multi-node and self-interactions

p = P (ξµi ̸= 0|ηµi = 1) ⇒ at low T multiplicity of attractors

Similarity of attractors: AND (left), OR (right)

Self-regulation crucial for multiplicity of attractors

Cooperativity promotes diversity

Both common features of GRNs ⇒ Sustain multi-cellular life?

[Hurry, Mozeika, AA, JPA (2022)]

Extensions: Multi-node and self-interactions

p = P (ξµi ̸= 0|ηµi = 1) ⇒ at low T multiplicity of attractors

Similarity of attractors: AND (left), OR (right)

Self-regulation crucial for multiplicity of attractors

Cooperativity promotes diversity

Both common features of GRNs ⇒ Sustain multi-cellular life?

[Hurry, Mozeika, AA, JPA (2022)]

Extensions: Multi-node and self-interactions

p = P (ξµi ̸= 0|ηµi = 1) ⇒ at low T multiplicity of attractors

Similarity of attractors: AND (left), OR (right)

Self-regulation crucial for multiplicity of attractors

Cooperativity promotes diversity

Both common features of GRNs ⇒ Sustain multi-cellular life?

[Hurry, Mozeika, AA, JPA (2022)]

Extensions: Multi-node and self-interactions

p = P (ξµi ̸= 0|ηµi = 1) ⇒ at low T multiplicity of attractors

Similarity of attractors: AND (left), OR (right)

Self-regulation crucial for multiplicity of attractors

Cooperativity promotes diversity

Both common features of GRNs ⇒ Sustain multi-cellular life?

[Hurry, Mozeika, AA, JPA (2022)]

Extensions: Multi-node and self-interactions

p = P (ξµi ̸= 0|ηµi = 1) ⇒ at low T multiplicity of attractors

Similarity of attractors: AND (left), OR (right)

Self-regulation crucial for multiplicity of attractors

Cooperativity promotes diversity

Both common features of GRNs ⇒ Sustain multi-cellular life?

[Hurry, Mozeika, AA, JPA (2022)]

Extensions: Multi-node and self-interactions

p = P (ξµi ̸= 0|ηµi = 1) ⇒ at low T multiplicity of attractors

Similarity of attractors: AND (left), OR (right)

Self-regulation crucial for multiplicity of attractors

Cooperativity promotes diversity

Both common features of GRNs ⇒ Sustain multi-cellular life?

[Hurry, Mozeika, AA, JPA (2022)]

Discussion

Constructed a minimal model with hierarchically organized cell cycles
inspired by Neural Networks

Investigated reprogramming:

Takes several cycles
Can be achieved with realistic numbers of TFs

Bipartite models

Percolation: for a cell to exist, TFs typically small protein complexes
that regulate many genes
Dynamics: efficient algorithm based on dynamic programming to
calculate gene expression profile
for fully asymmetric networks, distribution of node activation has rich
structure; Salient features rationalised in terms of discrete stochastic
maps
extensions to bi-directional links via OTA
Unbiased interactions can sustain activation or quiescence
Extensions to multi-node & self-interactions
Multiplicity of attractors at low T
Multi-node interactions favour diversity of attractors
Still many unanswered questions... the fight Maths vs GRNs continues!

Discussion

Constructed a minimal model with hierarchically organized cell cycles
inspired by Neural Networks
Investigated reprogramming:

Takes several cycles
Can be achieved with realistic numbers of TFs

Bipartite models

Percolation: for a cell to exist, TFs typically small protein complexes
that regulate many genes
Dynamics: efficient algorithm based on dynamic programming to
calculate gene expression profile
for fully asymmetric networks, distribution of node activation has rich
structure; Salient features rationalised in terms of discrete stochastic
maps
extensions to bi-directional links via OTA
Unbiased interactions can sustain activation or quiescence
Extensions to multi-node & self-interactions
Multiplicity of attractors at low T
Multi-node interactions favour diversity of attractors
Still many unanswered questions... the fight Maths vs GRNs continues!

Discussion

Constructed a minimal model with hierarchically organized cell cycles
inspired by Neural Networks
Investigated reprogramming:

Takes several cycles

Can be achieved with realistic numbers of TFs
Bipartite models

Percolation: for a cell to exist, TFs typically small protein complexes
that regulate many genes
Dynamics: efficient algorithm based on dynamic programming to
calculate gene expression profile
for fully asymmetric networks, distribution of node activation has rich
structure; Salient features rationalised in terms of discrete stochastic
maps
extensions to bi-directional links via OTA
Unbiased interactions can sustain activation or quiescence
Extensions to multi-node & self-interactions
Multiplicity of attractors at low T
Multi-node interactions favour diversity of attractors
Still many unanswered questions... the fight Maths vs GRNs continues!

Discussion

Constructed a minimal model with hierarchically organized cell cycles
inspired by Neural Networks
Investigated reprogramming:

Takes several cycles
Can be achieved with realistic numbers of TFs

Bipartite models

Percolation: for a cell to exist, TFs typically small protein complexes
that regulate many genes
Dynamics: efficient algorithm based on dynamic programming to
calculate gene expression profile
for fully asymmetric networks, distribution of node activation has rich
structure; Salient features rationalised in terms of discrete stochastic
maps
extensions to bi-directional links via OTA
Unbiased interactions can sustain activation or quiescence
Extensions to multi-node & self-interactions
Multiplicity of attractors at low T
Multi-node interactions favour diversity of attractors
Still many unanswered questions... the fight Maths vs GRNs continues!

Discussion

Constructed a minimal model with hierarchically organized cell cycles
inspired by Neural Networks
Investigated reprogramming:

Takes several cycles
Can be achieved with realistic numbers of TFs

Bipartite models

Percolation: for a cell to exist, TFs typically small protein complexes
that regulate many genes
Dynamics: efficient algorithm based on dynamic programming to
calculate gene expression profile
for fully asymmetric networks, distribution of node activation has rich
structure; Salient features rationalised in terms of discrete stochastic
maps
extensions to bi-directional links via OTA
Unbiased interactions can sustain activation or quiescence
Extensions to multi-node & self-interactions
Multiplicity of attractors at low T
Multi-node interactions favour diversity of attractors
Still many unanswered questions... the fight Maths vs GRNs continues!

Discussion

Constructed a minimal model with hierarchically organized cell cycles
inspired by Neural Networks
Investigated reprogramming:

Takes several cycles
Can be achieved with realistic numbers of TFs

Bipartite models
Percolation: for a cell to exist, TFs typically small protein complexes
that regulate many genes

Dynamics: efficient algorithm based on dynamic programming to
calculate gene expression profile
for fully asymmetric networks, distribution of node activation has rich
structure; Salient features rationalised in terms of discrete stochastic
maps
extensions to bi-directional links via OTA
Unbiased interactions can sustain activation or quiescence
Extensions to multi-node & self-interactions
Multiplicity of attractors at low T
Multi-node interactions favour diversity of attractors
Still many unanswered questions... the fight Maths vs GRNs continues!

Discussion

Constructed a minimal model with hierarchically organized cell cycles
inspired by Neural Networks
Investigated reprogramming:

Takes several cycles
Can be achieved with realistic numbers of TFs

Bipartite models
Percolation: for a cell to exist, TFs typically small protein complexes
that regulate many genes
Dynamics: efficient algorithm based on dynamic programming to
calculate gene expression profile

for fully asymmetric networks, distribution of node activation has rich
structure; Salient features rationalised in terms of discrete stochastic
maps
extensions to bi-directional links via OTA
Unbiased interactions can sustain activation or quiescence
Extensions to multi-node & self-interactions
Multiplicity of attractors at low T
Multi-node interactions favour diversity of attractors
Still many unanswered questions... the fight Maths vs GRNs continues!

Discussion

Constructed a minimal model with hierarchically organized cell cycles
inspired by Neural Networks
Investigated reprogramming:

Takes several cycles
Can be achieved with realistic numbers of TFs

Bipartite models
Percolation: for a cell to exist, TFs typically small protein complexes
that regulate many genes
Dynamics: efficient algorithm based on dynamic programming to
calculate gene expression profile
for fully asymmetric networks, distribution of node activation has rich
structure; Salient features rationalised in terms of discrete stochastic
maps

extensions to bi-directional links via OTA
Unbiased interactions can sustain activation or quiescence
Extensions to multi-node & self-interactions
Multiplicity of attractors at low T
Multi-node interactions favour diversity of attractors
Still many unanswered questions... the fight Maths vs GRNs continues!

Discussion

Constructed a minimal model with hierarchically organized cell cycles
inspired by Neural Networks
Investigated reprogramming:

Takes several cycles
Can be achieved with realistic numbers of TFs

Bipartite models
Percolation: for a cell to exist, TFs typically small protein complexes
that regulate many genes
Dynamics: efficient algorithm based on dynamic programming to
calculate gene expression profile
for fully asymmetric networks, distribution of node activation has rich
structure; Salient features rationalised in terms of discrete stochastic
maps
extensions to bi-directional links via OTA

Unbiased interactions can sustain activation or quiescence
Extensions to multi-node & self-interactions
Multiplicity of attractors at low T
Multi-node interactions favour diversity of attractors
Still many unanswered questions... the fight Maths vs GRNs continues!

Discussion

Constructed a minimal model with hierarchically organized cell cycles
inspired by Neural Networks
Investigated reprogramming:

Takes several cycles
Can be achieved with realistic numbers of TFs

Bipartite models
Percolation: for a cell to exist, TFs typically small protein complexes
that regulate many genes
Dynamics: efficient algorithm based on dynamic programming to
calculate gene expression profile
for fully asymmetric networks, distribution of node activation has rich
structure; Salient features rationalised in terms of discrete stochastic
maps
extensions to bi-directional links via OTA
Unbiased interactions can sustain activation or quiescence

Extensions to multi-node & self-interactions
Multiplicity of attractors at low T
Multi-node interactions favour diversity of attractors
Still many unanswered questions... the fight Maths vs GRNs continues!

Discussion

Constructed a minimal model with hierarchically organized cell cycles
inspired by Neural Networks
Investigated reprogramming:

Takes several cycles
Can be achieved with realistic numbers of TFs

Bipartite models
Percolation: for a cell to exist, TFs typically small protein complexes
that regulate many genes
Dynamics: efficient algorithm based on dynamic programming to
calculate gene expression profile
for fully asymmetric networks, distribution of node activation has rich
structure; Salient features rationalised in terms of discrete stochastic
maps
extensions to bi-directional links via OTA
Unbiased interactions can sustain activation or quiescence
Extensions to multi-node & self-interactions

Multiplicity of attractors at low T
Multi-node interactions favour diversity of attractors
Still many unanswered questions... the fight Maths vs GRNs continues!

Discussion

Constructed a minimal model with hierarchically organized cell cycles
inspired by Neural Networks
Investigated reprogramming:

Takes several cycles
Can be achieved with realistic numbers of TFs

Bipartite models
Percolation: for a cell to exist, TFs typically small protein complexes
that regulate many genes
Dynamics: efficient algorithm based on dynamic programming to
calculate gene expression profile
for fully asymmetric networks, distribution of node activation has rich
structure; Salient features rationalised in terms of discrete stochastic
maps
extensions to bi-directional links via OTA
Unbiased interactions can sustain activation or quiescence
Extensions to multi-node & self-interactions
Multiplicity of attractors at low T

Multi-node interactions favour diversity of attractors
Still many unanswered questions... the fight Maths vs GRNs continues!

Discussion

Constructed a minimal model with hierarchically organized cell cycles
inspired by Neural Networks
Investigated reprogramming:

Takes several cycles
Can be achieved with realistic numbers of TFs

Bipartite models
Percolation: for a cell to exist, TFs typically small protein complexes
that regulate many genes
Dynamics: efficient algorithm based on dynamic programming to
calculate gene expression profile
for fully asymmetric networks, distribution of node activation has rich
structure; Salient features rationalised in terms of discrete stochastic
maps
extensions to bi-directional links via OTA
Unbiased interactions can sustain activation or quiescence
Extensions to multi-node & self-interactions
Multiplicity of attractors at low T
Multi-node interactions favour diversity of attractors

Still many unanswered questions... the fight Maths vs GRNs continues!

Discussion

Constructed a minimal model with hierarchically organized cell cycles
inspired by Neural Networks
Investigated reprogramming:

Takes several cycles
Can be achieved with realistic numbers of TFs

Bipartite models
Percolation: for a cell to exist, TFs typically small protein complexes
that regulate many genes
Dynamics: efficient algorithm based on dynamic programming to
calculate gene expression profile
for fully asymmetric networks, distribution of node activation has rich
structure; Salient features rationalised in terms of discrete stochastic
maps
extensions to bi-directional links via OTA
Unbiased interactions can sustain activation or quiescence
Extensions to multi-node & self-interactions
Multiplicity of attractors at low T
Multi-node interactions favour diversity of attractors
Still many unanswered questions... the fight Maths vs GRNs continues!

Acknowledgement

PhD Students
Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators
Elena Agliari (Sapienza, Rome)
Adriano Barra (Unisalento, Lecce)
Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Many thanks Reimer!

Many thanks for listening!

Acknowledgement

PhD Students
Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators
Elena Agliari (Sapienza, Rome)
Adriano Barra (Unisalento, Lecce)
Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Many thanks Reimer!

Many thanks for listening!

Acknowledgement

PhD Students
Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators
Elena Agliari (Sapienza, Rome)
Adriano Barra (Unisalento, Lecce)
Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Many thanks Reimer!

Many thanks for listening!

Acknowledgement

PhD Students
Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators
Elena Agliari (Sapienza, Rome)
Adriano Barra (Unisalento, Lecce)
Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Many thanks Reimer!

Many thanks for listening!

Acknowledgement

PhD Students
Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators
Elena Agliari (Sapienza, Rome)
Adriano Barra (Unisalento, Lecce)
Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Many thanks Reimer!

Many thanks for listening!

Acknowledgement

PhD Students
Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators
Elena Agliari (Sapienza, Rome)
Adriano Barra (Unisalento, Lecce)
Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Many thanks Reimer!

Many thanks for listening!

Acknowledgement

PhD Students
Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators
Elena Agliari (Sapienza, Rome)
Adriano Barra (Unisalento, Lecce)
Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Many thanks Reimer!

Many thanks for listening!

Acknowledgement

PhD Students
Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators
Elena Agliari (Sapienza, Rome)
Adriano Barra (Unisalento, Lecce)
Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Many thanks Reimer!

Many thanks for listening!

Acknowledgement

PhD Students
Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators
Elena Agliari (Sapienza, Rome)
Adriano Barra (Unisalento, Lecce)
Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Many thanks Reimer!

Many thanks for listening!

Acknowledgement

PhD Students
Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators
Elena Agliari (Sapienza, Rome)
Adriano Barra (Unisalento, Lecce)
Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Many thanks Reimer!

Many thanks for listening!

Dynamic programming

Pi(t+ 1) = ⟨ΦT (hi(n∂i)− ϑi)⟩n∂i
, t hi(n∂i) =

∑
j

Jijnj

Let ∂i = {1, . . . , ki} and def. average over subset of nodes

fi(ℓ, h̃) =

〈
ΦT

(
h̃+

ki∑
j=ℓ

Jijnj − ϑi

)〉
nℓ,...,ki

,t

⇒ Pi(t+ 1) = fi(1, 0)

h̃ = auxiliary field

fi(ℓ, h̃) obtained from backward recursion

fi(ℓ, h̃) = Pℓ(t) fi(ℓ+ 1, h̃+ Jiℓ) +
(
1− Pℓ(t)

)
fi(ℓ+ 1, h̃)

with terminal boundary condition fi(ki + 1, h̃) = ΦT

(
h̃− ϑi

)

Dynamic programming

Pi(t+ 1) = ⟨ΦT (hi(n∂i)− ϑi)⟩n∂i
, t hi(n∂i) =

∑
j

Jijnj

Let ∂i = {1, . . . , ki} and def. average over subset of nodes

fi(ℓ, h̃) =

〈
ΦT

(
h̃+

ki∑
j=ℓ

Jijnj − ϑi

)〉
nℓ,...,ki

,t

⇒ Pi(t+ 1) = fi(1, 0)

h̃ = auxiliary field

fi(ℓ, h̃) obtained from backward recursion

fi(ℓ, h̃) = Pℓ(t) fi(ℓ+ 1, h̃+ Jiℓ) +
(
1− Pℓ(t)

)
fi(ℓ+ 1, h̃)

with terminal boundary condition fi(ki + 1, h̃) = ΦT

(
h̃− ϑi

)

Dynamic programming

Pi(t+ 1) = ⟨ΦT (hi(n∂i)− ϑi)⟩n∂i
, t hi(n∂i) =

∑
j

Jijnj

Let ∂i = {1, . . . , ki} and def. average over subset of nodes

fi(ℓ, h̃) =

〈
ΦT

(
h̃+

ki∑
j=ℓ

Jijnj − ϑi

)〉
nℓ,...,ki

,t

⇒ Pi(t+ 1) = fi(1, 0)

h̃ = auxiliary field

fi(ℓ, h̃) obtained from backward recursion

fi(ℓ, h̃) = Pℓ(t) fi(ℓ+ 1, h̃+ Jiℓ) +
(
1− Pℓ(t)

)
fi(ℓ+ 1, h̃)

with terminal boundary condition fi(ki + 1, h̃) = ΦT

(
h̃− ϑi

)

Dynamic programming

Pi(t+ 1) = ⟨ΦT (hi(n∂i)− ϑi)⟩n∂i
, t hi(n∂i) =

∑
j

Jijnj

Let ∂i = {1, . . . , ki} and def. average over subset of nodes

fi(ℓ, h̃) =

〈
ΦT

(
h̃+

ki∑
j=ℓ

Jijnj − ϑi

)〉
nℓ,...,ki

,t

⇒ Pi(t+ 1) = fi(1, 0)

h̃ = auxiliary field

fi(ℓ, h̃) obtained from backward recursion

fi(ℓ, h̃) = Pℓ(t) fi(ℓ+ 1, h̃+ Jiℓ) +
(
1− Pℓ(t)

)
fi(ℓ+ 1, h̃)

with terminal boundary condition fi(ki + 1, h̃) = ΦT

(
h̃− ϑi

)

Dynamic programming [Torrisi, AA, Kühn, PRE (2021)]

For Jij ∈ {0,±J}:
at each ℓ, fi(ℓ, h̃) requires fi(ℓ+ 1, h̃) and fi(ℓ+ 1, h̃± J)

⇒ evaluation of fi(ℓ, h̃) only required on discrete grid

ki = 3, ∂i = {1, 2, 3}
Ji1 = +J ; Ji2 = −J ; Ji3 = +J

Nr eval. =

ki+1∑
ℓ=1

ℓ = (ki + 1)(ki + 2)/2 ∀ i

Complexity O(
∑

i 2
ki) ⇒ O(

∑
i k

2
i)

Similar reduction for Jij ∈ {−riJi, . . . ,−Ji, 0, Ji, . . . , siJi}

Dynamic programming [Torrisi, AA, Kühn, PRE (2021)]

For Jij ∈ {0,±J}:
at each ℓ, fi(ℓ, h̃) requires fi(ℓ+ 1, h̃) and fi(ℓ+ 1, h̃± J)

⇒ evaluation of fi(ℓ, h̃) only required on discrete grid

ki = 3, ∂i = {1, 2, 3}
Ji1 = +J ; Ji2 = −J ; Ji3 = +J

Nr eval. =

ki+1∑
ℓ=1

ℓ = (ki + 1)(ki + 2)/2 ∀ i

Complexity O(
∑

i 2
ki) ⇒ O(

∑
i k

2
i)

Similar reduction for Jij ∈ {−riJi, . . . ,−Ji, 0, Ji, . . . , siJi}

Dynamic programming [Torrisi, AA, Kühn, PRE (2021)]

For Jij ∈ {0,±J}:
at each ℓ, fi(ℓ, h̃) requires fi(ℓ+ 1, h̃) and fi(ℓ+ 1, h̃± J)

⇒ evaluation of fi(ℓ, h̃) only required on discrete grid

ki = 3, ∂i = {1, 2, 3}
Ji1 = +J ; Ji2 = −J ; Ji3 = +J

Nr eval. =

ki+1∑
ℓ=1

ℓ = (ki + 1)(ki + 2)/2 ∀ i

Complexity O(
∑

i 2
ki) ⇒ O(

∑
i k

2
i)

Similar reduction for Jij ∈ {−riJi, . . . ,−Ji, 0, Ji, . . . , siJi}

Dynamic programming [Torrisi, AA, Kühn, PRE (2021)]

For Jij ∈ {0,±J}:
at each ℓ, fi(ℓ, h̃) requires fi(ℓ+ 1, h̃) and fi(ℓ+ 1, h̃± J)

⇒ evaluation of fi(ℓ, h̃) only required on discrete grid

ki = 3, ∂i = {1, 2, 3}
Ji1 = +J ; Ji2 = −J ; Ji3 = +J

Nr eval. =

ki+1∑
ℓ=1

ℓ = (ki + 1)(ki + 2)/2 ∀ i

Complexity O(
∑

i 2
ki) ⇒ O(

∑
i k

2
i)

Similar reduction for Jij ∈ {−riJi, . . . ,−Ji, 0, Ji, . . . , siJi}

Dynamic programming [Torrisi, AA, Kühn, PRE (2021)]

For Jij ∈ {0,±J}:
at each ℓ, fi(ℓ, h̃) requires fi(ℓ+ 1, h̃) and fi(ℓ+ 1, h̃± J)

⇒ evaluation of fi(ℓ, h̃) only required on discrete grid

ki = 3, ∂i = {1, 2, 3}
Ji1 = +J ; Ji2 = −J ; Ji3 = +J

Nr eval. =

ki+1∑
ℓ=1

ℓ = (ki + 1)(ki + 2)/2 ∀ i

Complexity O(
∑

i 2
ki) ⇒ O(

∑
i k

2
i)

Similar reduction for Jij ∈ {−riJi, . . . ,−Ji, 0, Ji, . . . , siJi}

Dynamic programming [Torrisi, AA, Kühn, PRE (2021)]

For Jij ∈ {0,±J}:
at each ℓ, fi(ℓ, h̃) requires fi(ℓ+ 1, h̃) and fi(ℓ+ 1, h̃± J)

⇒ evaluation of fi(ℓ, h̃) only required on discrete grid

ki = 3, ∂i = {1, 2, 3}
Ji1 = +J ; Ji2 = −J ; Ji3 = +J

Nr eval. =

ki+1∑
ℓ=1

ℓ = (ki + 1)(ki + 2)/2 ∀ i

Complexity O(
∑

i 2
ki) ⇒ O(

∑
i k

2
i)

Similar reduction for Jij ∈ {−riJi, . . . ,−Ji, 0, Ji, . . . , siJi}

Dynamic programming [Torrisi, AA, Kühn, PRE (2021)]

For Jij ∈ {0,±J}:
at each ℓ, fi(ℓ, h̃) requires fi(ℓ+ 1, h̃) and fi(ℓ+ 1, h̃± J)

⇒ evaluation of fi(ℓ, h̃) only required on discrete grid

ki = 3, ∂i = {1, 2, 3}
Ji1 = +J ; Ji2 = −J ; Ji3 = +J

Nr eval. =

ki+1∑
ℓ=1

ℓ = (ki + 1)(ki + 2)/2 ∀ i

Complexity O(
∑

i 2
ki) ⇒ O(

∑
i k

2
i)

Similar reduction for Jij ∈ {−riJi, . . . ,−Ji, 0, Ji, . . . , siJi}

Dynamic programming [Torrisi, AA, Kühn, PRE (2021)]

For Jij ∈ {0,±J}:
at each ℓ, fi(ℓ, h̃) requires fi(ℓ+ 1, h̃) and fi(ℓ+ 1, h̃± J)

⇒ evaluation of fi(ℓ, h̃) only required on discrete grid

ki = 3, ∂i = {1, 2, 3}
Ji1 = +J ; Ji2 = −J ; Ji3 = +J

Nr eval. =

ki+1∑
ℓ=1

ℓ = (ki + 1)(ki + 2)/2 ∀ i

Complexity O(
∑

i 2
ki) ⇒ O(

∑
i k

2
i)

Similar reduction for Jij ∈ {−riJi, . . . ,−Ji, 0, Ji, . . . , siJi}

	Motivation
	

	Model inspired by neural networks
	Model definition
	Results

	Introducing TFs: a bipartite graph model
	Model definition
	Percolation theory
	Dynamics
	One-time approximation
	Extensions: Multi-node and self-interactions

