Mathematicians against gene-regulatory networks

Alessia Annibale

Mathematics, King's College London

DISORDERED SYSTEMS DAYS AT KING'S COLLEGE LONDON

A workshop on disorder to celebrate Reimer Kühn

11-12 September 2023

<ロト <四ト <注入 <注下 <注下 <

Outline

Motivation

- 2 Model inspired by neural networks
 - Model definition
 - Results

Introducing TFs: a bipartite graph model

- Model definition
- Percolation theory
- Dynamics
- One-time approximation
- Extensions: Multi-node and self-interactions

(日) (문) (문) (문) (문)

Outline

1 Motivation

- 2 Model inspired by neural networks
 - Model definition
 - Results

Introducing TFs: a bipartite graph model

- Model definition
- Percolation theory
- Dynamics
- One-time approximation
- Extensions: Multi-node and self-interactions

・ロト ・四ト ・ヨト ・ヨト

- 2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Source: ARK Investment Management LLC | ark-invest.com

Source: ARK Investment Management LLC | ark-invest.com

• Each cell contains the same genes, $N \sim 25000$

Source: ARK Investment Management LLC | ark-invest.com

- Each cell contains the same genes, $N\sim 25000$
- Different cells express different genes

æ

(日) (部) (目) (目)

Source: ARK Investment Management LLC | ark-invest.com

- Each cell contains the same genes, $N\sim 25000$
- Different cells express different genes
- Transcription factors (TFs) regulate expression

Source: ARK Investment Management LLC | ark-invest.com

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

• Nobel prize 2012 for Physiology or Medicine

· □ > · (周 > · (日 > · (日 >)

3

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

• Nobel prize 2012 for Physiology or Medicine

· □ > · (周 > · (日 > · (日 >)

3

• $\mathcal{O}(10)$ days to reprogram

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

- Nobel prize 2012 for Physiology or Medicine
- $\mathcal{O}(10)$ days to reprogram
- many cells take 'bad trajectories' after reprogramming.. e.g. cancer

Source: Cell Transfection - cell-transfection.com

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

- Nobel prize 2012 for Physiology or Medicine
- $\mathcal{O}(10)$ days to reprogram
- many cells take 'bad trajectories' after reprogramming.. e.g. cancer

• Q: How to control cell fate?

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

- Nobel prize 2012 for Physiology or Medicine
- $\mathcal{O}(10)$ days to reprogram
- many cells take 'bad trajectories' after reprogramming.. e.g. cancer
- Q: How to control cell fate?
- huge dim: 'on/off' genes $\Rightarrow 2^{25,000}$ possible gene patterns

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

- Nobel prize 2012 for Physiology or Medicine
- $\mathcal{O}(10)$ days to reprogram
- many cells take 'bad trajectories' after reprogramming.. e.g. cancer
- Q: How to control cell fate?
- huge dim: 'on/off' genes $\Rightarrow 2^{25,000}$ possible gene patterns
- Striking that we only have ~ 300 cell types..

(日) (同) (日) (日)

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

- Nobel prize 2012 for Physiology or Medicine
- $\mathcal{O}(10)$ days to reprogram
- many cells take 'bad trajectories' after reprogramming.. e.g. cancer
- Q: How to control cell fate?
- huge dim: 'on/off' genes $\Rightarrow 2^{25,000}$ possible gene patterns
- Striking that we only have ~ 300 cell types..
- Idea: cell types are attractors of gene dynamics, like memories for neural dynamics..

Outline

Motivation

- Model inspired by neural networks
 Model definition
 - Results

Introducing TFs: a bipartite graph model

- Model definition
- Percolation theory
- Dynamics
- One-time approximation
- Extensions: Multi-node and self-interactions

<ロ> (四) (四) (三) (三) (三)

- 2

• If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).

• If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).

(中) (종) (종) (종) (종) (종)

• Suppose I integrate out all degrees of freedom except genes

• If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).

(中) (종) (종) (종) (종) (종)

• Suppose I integrate out all degrees of freedom except genes

• If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

 Suppose I integrate out all degrees of freedom except genes ⇒ reduced system of interacting genes

• If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• Suppose I integrate out all degrees of freedom **except** genes \Rightarrow reduced system of interacting genes $h_i(t) = \sum_j J_{ij} n_j(t)$

• If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).

• Suppose I integrate out all degrees of freedom **except** genes \Rightarrow reduced system of interacting genes $h_i(t) = \sum_j J_{ij} n_j(t)$

$$J_{ij} = \begin{cases} > 0 & \text{promote} \\ < 0 & \text{inhibit} \end{cases}$$

•

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom **except** genes \Rightarrow reduced system of interacting genes $h_i(t) = \sum_j J_{ij} n_j(t)$

$$J_{ij} = \begin{cases} > 0 & \text{promote} \\ < 0 & \text{inhibit} \end{cases} \qquad n_i \in \{0, 1\}: \quad n_i(t+1) = \Theta \Big[h_i(t) - z_i(t) \Big]$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom **except** genes \Rightarrow reduced system of interacting genes $h_i(t) = \sum_j J_{ij} n_j(t)$

$$J_{ij} = \begin{cases} > 0 & \text{promote} \\ < 0 & \text{inhibit} \end{cases} \qquad n_i \in \{0, 1\}: \quad n_i(t+1) = \Theta \Big[h_i(t) - z_i(t) \Big]$$

 $\mathsf{Prob}[z \leq x] = \Phi_T(x), \quad T = \mathsf{noise level}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom **except** genes \Rightarrow reduced system of interacting genes $h_i(t) = \sum_j J_{ij} n_j(t)$
 - $J_{ij} = \begin{cases} > 0 & \text{promote} \\ < 0 & \text{inhibit} \end{cases} \qquad n_i \in \{0, 1\}: \quad n_i(t+1) = \Theta \Big[h_i(t) z_i(t) \Big]$

 $\mathsf{Prob}[z \le x] = \Phi_T(x)$, $T = \mathsf{noise}$ level

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• Neural Networks $\sigma_i = \pm 1$: $\sigma_i(t+1) = \text{sgn}\Big[\sum_j J_{ij}\sigma_j(t) - z_i(t)\Big]$

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom **except** genes \Rightarrow reduced system of interacting genes $h_i(t) = \sum_j J_{ij} n_j(t)$
 - $J_{ij} = \begin{cases} > 0 & \text{promote} \\ < 0 & \text{inhibit} \end{cases} \qquad n_i \in \{0, 1\}: \quad n_i(t+1) = \Theta \Big[h_i(t) z_i(t) \Big]$

 $\mathsf{Prob}[z \le x] = \Phi_T(x)$, $T = \mathsf{noise}$ level

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• Neural Networks $\sigma_i = \pm 1$: $\sigma_i(t+1) = \text{sgn}\Big[\sum_j J_{ij}\sigma_j(t) - z_i(t)\Big]$

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom **except** genes \Rightarrow reduced system of interacting genes $h_i(t) = \sum_j J_{ij} n_j(t)$

 $J_{ij} = \begin{cases} > 0 & \text{promote} \\ < 0 & \text{inhibit} \end{cases} \qquad n_i \in \{0, 1\}: \quad n_i(t+1) = \Theta \Big[h_i(t) - z_i(t) \Big]$

 $\mathsf{Prob}[z \leq x] = \Phi_T(x), \quad T = \mathsf{noise \ level}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• Neural Networks $\sigma_i = \pm 1$: $\sigma_i(t+1) = \text{sgn} \left[\sum_j J_{ij} \sigma_j(t) - z_i(t) \right]$ Store multiple patterns $\{ \boldsymbol{\xi}^1, \dots, \boldsymbol{\xi}^P \}$ [Hopfield (1982)]

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom **except** genes \Rightarrow reduced system of interacting genes $h_i(t) = \sum_j J_{ij} n_j(t)$
 - $J_{ij} = \begin{cases} > 0 & \text{promote} \\ < 0 & \text{inhibit} \end{cases} \qquad n_i \in \{0, 1\}: \quad n_i(t+1) = \Theta \Big[h_i(t) z_i(t) \Big]$

 $\operatorname{Prob}[z \leq x] = \Phi_T(x)$, $T = \operatorname{noise}$ level

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三語……

• Neural Networks $\sigma_i = \pm 1$: $\sigma_i(t+1) = \text{sgn} \left[\sum_j J_{ij} \sigma_j(t) - z_i(t) \right]$ Store multiple patterns $\{\boldsymbol{\xi}^1, \dots, \boldsymbol{\xi}^P\}$ [Hopfield (1982)]

Theory of Neuronal Information Processing, Coolen, Kühn, Sollich

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom **except** genes \Rightarrow reduced system of interacting genes $h_i(t) = \sum_j J_{ij} n_j(t)$
 - $J_{ij} = \begin{cases} > 0 & \text{promote} \\ < 0 & \text{inhibit} \end{cases} \qquad n_i \in \{0, 1\} : \quad n_i(t+1) = \Theta \Big[h_i(t) z_i(t) \Big]$

 $\operatorname{Prob}[z \leq x] = \Phi_T(x)$, $T = \operatorname{noise}$ level

• Neural Networks $\sigma_i = \pm 1$: $\sigma_i(t+1) = \text{sgn}\left[\sum_j J_{ij}\sigma_j(t) - z_i(t)\right]$ Store multiple patterns $\{\boldsymbol{\xi}^1, \dots, \boldsymbol{\xi}^P\}$ [Hopfield (1982)]

Theory of Neuronal Information Processing, Coolen, Kühn, Sollich

N pixels. $i = 1, \ldots, N$

 $\xi_i^{\mu} = \begin{cases} 1 & \Box \\ -1 & \blacksquare \end{cases}$

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom **except** genes \Rightarrow reduced system of interacting genes $h_i(t) = \sum_j J_{ij} n_j(t)$
 - $J_{ij} = \begin{cases} > 0 & \text{promote} \\ < 0 & \text{inhibit} \end{cases} \qquad n_i \in \{0, 1\} : \quad n_i(t+1) = \Theta \Big[h_i(t) z_i(t) \Big]$

 $\operatorname{Prob}[z \leq x] = \Phi_T(x)$, $T = \operatorname{noise}$ level

• Neural Networks $\sigma_i = \pm 1$: $\sigma_i(t+1) = \text{sgn}\left[\sum_j J_{ij}\sigma_j(t) - z_i(t)\right]$ Store multiple patterns $\{\boldsymbol{\xi}^1, \dots, \boldsymbol{\xi}^P\}$ [Hopfield (1982)]

Theory of Neuronal Information Processing, Coolen, Kühn, Sollich

N pixels. $i = 1, \ldots, N$

 $\xi_i^{\mu} = \begin{cases} 1 & \Box \\ -1 & \blacksquare \end{cases}$

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom **except** genes \Rightarrow reduced system of interacting genes $h_i(t) = \sum_j J_{ij} n_j(t)$
 - $J_{ij} = \begin{cases} > 0 & \text{promote} \\ < 0 & \text{inhibit} \end{cases} \qquad n_i \in \{0, 1\} : \quad n_i(t+1) = \Theta \Big[h_i(t) z_i(t) \Big]$

 $\mathsf{Prob}[z \leq x] = \Phi_T(x), \quad T = \mathsf{noise \ level}$

• Neural Networks $\sigma_i = \pm 1$: $\sigma_i(t+1) = \text{sgn}\left[\sum_j J_{ij}\sigma_j(t) - z_i(t)\right]$ Store multiple patterns $\{\boldsymbol{\xi}^1, \dots, \boldsymbol{\xi}^P\}$ [Hopfield (1982)]

N pixels, $i=1,\ldots,N$

$$\xi_i^{\mu} = \begin{cases} 1 & \Box \\ -1 & \blacksquare \end{cases}$$

Theory of Neuronal Information Processing, Coolen, Kühn, Sollich

M K
Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom **except** genes \Rightarrow reduced system of interacting genes $h_i(t) = \sum_j J_{ij} n_j(t)$
 - $J_{ij} = \begin{cases} > 0 & \text{promote} \\ < 0 & \text{inhibit} \end{cases} \qquad n_i \in \{0, 1\} : \quad n_i(t+1) = \Theta \Big[h_i(t) z_i(t) \Big]$

 $\mathsf{Prob}[z \leq x] = \Phi_T(x), \quad T = \mathsf{noise \ level}$

• Neural Networks $\sigma_i = \pm 1$: $\sigma_i(t+1) = \text{sgn}\left[\sum_j J_{ij}\sigma_j(t) - z_i(t)\right]$ Store multiple patterns $\{\boldsymbol{\xi}^1, \dots, \boldsymbol{\xi}^P\}$ [Hopfield (1982)]

N pixels, $i=1,\ldots,N$

▲口> ▲圖> ▲理> ▲理> 三理 ---

$$\xi_i^{\mu} \!=\! \left\{ \begin{array}{cc} 1 & \square \\ -1 & \blacksquare \end{array} \right.$$

Theory of Neuronal Information Processing, Coolen, Kühn, Sollich

$$J_{ij} = P^{-1} \sum_{\mu} \xi_i^{\mu} \xi_j^{\mu}$$

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom **except** genes \Rightarrow reduced system of interacting genes $h_i(t) = \sum_j J_{ij} n_j(t)$
 - $J_{ij} = \begin{cases} > 0 & \text{promote} \\ < 0 & \text{inhibit} \end{cases} \qquad n_i \in \{0, 1\} : \quad n_i(t+1) = \Theta \Big[h_i(t) z_i(t) \Big]$

 $\mathsf{Prob}[z \leq x] = \Phi_T(x), \quad T = \mathsf{noise \ level}$

• Neural Networks $\sigma_i = \pm 1$: $\sigma_i(t+1) = \text{sgn}\left[\sum_j J_{ij}\sigma_j(t) - z_i(t)\right]$ Store multiple patterns $\{\boldsymbol{\xi}^1, \dots, \boldsymbol{\xi}^P\}$ [Hopfield (1982)]

Theory of Neuronal Information Processing, Coolen, Kühn, Sollich

$$J_{ij} = P^{-1} \sum_{\mu} \xi_i^{\mu} \xi_j^{\mu}$$

$$\sigma(0) \rightarrow \ldots \rightarrow \boldsymbol{\xi}^{\rho}$$

$$N$$
 pixels, $i = 1, \ldots, N$

$$\xi_i^{\mu} \!=\! \left\{ \begin{array}{cc} 1 & \square \\ -1 & \blacksquare \end{array} \right.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○ ○

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom **except** genes \Rightarrow reduced system of interacting genes $h_i(t) = \sum_j J_{ij} n_j(t)$
 - $J_{ij} = \begin{cases} > 0 & \text{promote} \\ < 0 & \text{inhibit} \end{cases} \qquad n_i \in \{0, 1\} : \quad n_i(t+1) = \Theta \Big[h_i(t) z_i(t) \Big]$

 $\operatorname{Prob}[z \leq x] = \Phi_T(x)$, $T = \operatorname{noise}$ level

• Neural Networks $\sigma_i = \pm 1$: $\sigma_i(t+1) = \text{sgn}\left[\sum_j J_{ij}\sigma_j(t) - z_i(t)\right]$ Store multiple patterns $\{\boldsymbol{\xi}^1, \dots, \boldsymbol{\xi}^P\}$ [Hopfield (1982)]

Theory of Neuronal Information Processing, Coolen, Kühn, Sollich

$$\sigma(0) \rightarrow \ldots \rightarrow \boldsymbol{\xi}^{\rho}$$

N pixels. $i = 1, \ldots, N$

 $\xi_i^{\mu} = \begin{cases} 1 & \Box \\ -1 & \blacksquare \end{cases}$

• cell types are hierarchically organized

(日) (部) (注) (注)

• cell types are hierarchically organized

• dynamical entities i.e. they cycle $(G_1 \rightarrow S \rightarrow G_2 \rightarrow M \rightarrow G_1 \dots)$

(a) (a) (a) (a) (a)

크

• cell types are hierarchically organized

• dynamical entities i.e. they cycle $(G_1 \rightarrow S \rightarrow G_2 \rightarrow M \rightarrow G_1 \dots)$ \Rightarrow Choose J_{ij} to encode hierarchically organized cycles

(日) (部) (目) (目)

크

• cell types are hierarchically organized

• dynamical entities i.e. they cycle $(G_1 \rightarrow S \rightarrow G_2 \rightarrow M \rightarrow G_1 \dots)$ \Rightarrow Choose J_{ij} to encode hierarchically organized cycles

(日) (部) (目) (目)

- 12

• cell types are hierarchically organized

• dynamical entities i.e. they cycle $(G_1 \rightarrow S \rightarrow G_2 \rightarrow M \rightarrow G_1 \dots)$ \Rightarrow Choose J_{ij} to encode hierarchically organized cycles

(日) (部) (目) (目)

- 12

• cell types are hierarchically organized

• dynamical entities i.e. they cycle $(G_1 \rightarrow S \rightarrow G_2 \rightarrow M \rightarrow G_1 \dots)$ \Rightarrow Choose J_{ij} to encode hierarchically organized cycles

•
$$ho = \mathsf{cell}\mathsf{-cycle}$$
 stage $\in \{1 \dots C\}$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• cell types are hierarchically organized

• dynamical entities i.e. they cycle $(G_1 \rightarrow S \rightarrow G_2 \rightarrow M \rightarrow G_1 \dots)$ \Rightarrow Choose J_{ij} to encode hierarchically organized cycles

•
$$\rho$$
=cell-cycle stage $\in \{1 \dots C\}$

•
$$\mu = \mathsf{somatic} \mathsf{ cell type} \in \{1 \dots M\}$$

• cell types are hierarchically organized

• dynamical entities i.e. they cycle $(G_1 \rightarrow S \rightarrow G_2 \rightarrow M \rightarrow G_1 \dots)$ \Rightarrow Choose J_{ij} to encode hierarchically organized cycles

•
$$\rho$$
=cell-cycle stage $\in \{1 \dots C\}$

- $\mu = \text{somatic cell type} \in \{1 \dots M\}$
- $\eta_i^{\rho}, \eta_i^{\rho\mu} \in \{0, 1\}$: gene i in given cell type & phase

• Sequences of patterns: $oldsymbol{\xi}^1 o oldsymbol{\xi}^2 o \dots oldsymbol{\xi}^P$ [Sompolinsky, Kanter (1986)]

$$J_{ij} = \frac{1}{N} \sum_{\mu=1}^{P} \xi_i^{\mu+1} \xi_j^{\mu}$$

$$Cycles: \boldsymbol{\xi}^{P+1} = \boldsymbol{\xi}^1$$

• Sequences of patterns: $oldsymbol{\xi}^1 o oldsymbol{\xi}^2 o \dots oldsymbol{\xi}^P$ [Sompolinsky, Kanter (1986)]

$$J_{ij} = \frac{1}{N} \sum_{\mu=1}^{P} \xi_i^{\mu+1} \xi_j^{\mu} \qquad \text{Cycles} : \boldsymbol{\xi}^{P+1} = \boldsymbol{\xi}^1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow \{\boldsymbol{\xi}^{\rho\mu}\} \rightarrow \{\{\boldsymbol{\xi}^{\rho\mu\lambda}\}\}$

• Sequences of patterns: $oldsymbol{\xi}^1 o oldsymbol{\xi}^2 o \dots oldsymbol{\xi}^P$ [Sompolinsky, Kanter (1986)]

$$J_{ij} = \frac{1}{N} \sum_{\mu=1}^{P} \xi_i^{\mu+1} \xi_j^{\mu} \qquad \text{Cycles} : \boldsymbol{\xi}^{P+1} = \boldsymbol{\xi}^1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow \{\boldsymbol{\xi}^{\rho\mu}\} \rightarrow \{\{\boldsymbol{\xi}^{\rho\mu\lambda}\}\}$

• Sequences of patterns: $oldsymbol{\xi}^1 o oldsymbol{\xi}^2 o \dots oldsymbol{\xi}^P$ [Sompolinsky, Kanter (1986)]

$$J_{ij} = \frac{1}{N} \sum_{\mu=1}^{P} \xi_i^{\mu+1} \xi_j^{\mu} \qquad \text{Cycles} : \boldsymbol{\xi}^{P+1} = \boldsymbol{\xi}$$

• Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow \{\boldsymbol{\xi}^{\rho\mu}\} \rightarrow \{\{\boldsymbol{\xi}^{\rho\mu\lambda}\}\}$

• Sequences of patterns: $oldsymbol{\xi}^1 o oldsymbol{\xi}^2 o \dots oldsymbol{\xi}^P$ [Sompolinsky, Kanter (1986)]

$$J_{ij} = \frac{1}{N} \sum_{\mu=1}^{P} \xi_i^{\mu+1} \xi_j^{\mu} \qquad \text{Cycles} : \boldsymbol{\xi}^{P+1} = \boldsymbol{\xi}$$

• Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow \{\boldsymbol{\xi}^{\rho\mu}\} \rightarrow \{\{\boldsymbol{\xi}^{\rho\mu\lambda}\}\}$

• Sequences of patterns: $oldsymbol{\xi}^1 o oldsymbol{\xi}^2 o \dots oldsymbol{\xi}^P$ [Sompolinsky, Kanter (1986)]

$$J_{ij} = \frac{1}{N} \sum_{\mu=1}^{P} \xi_i^{\mu+1} \xi_j^{\mu} \qquad \text{Cycles} : \boldsymbol{\xi}^{P+1} = \boldsymbol{\xi}$$

• Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow \{\boldsymbol{\xi}^{\rho\mu}\} \rightarrow \{\{\boldsymbol{\xi}^{\rho\mu\lambda}\}\}$

• Sequences of patterns: $m{\xi}^1 o m{\xi}^2 o \dots m{\xi}^P$ [Sompolinsky, Kanter (1986)]

$$J_{ij} = \frac{1}{N} \sum_{\mu=1}^{P} \xi_i^{\mu+1} \xi_j^{\mu} \qquad \text{Cycles} : \boldsymbol{\xi}^{P+1} = \boldsymbol{\xi}$$

• Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow \{\boldsymbol{\xi}^{\rho\mu}\} \rightarrow \{\{\boldsymbol{\xi}^{\rho\mu\lambda}\}\}$

[Parga, Virasoro (1986); Krogh, Herz (1988)]

Markov process [defn as martingale]: $W(\xi^{\mu_1...\mu_{k+1}}|\xi^{\mu_1...\mu_k})$

• Sequences of patterns: $m{\xi}^1 o m{\xi}^2 o \dots m{\xi}^P$ [Sompolinsky, Kanter (1986)]

$$J_{ij} = \frac{1}{N} \sum_{\mu=1}^{P} \xi_i^{\mu+1} \xi_j^{\mu} \qquad \text{Cycles} : \boldsymbol{\xi}^{P+1} = \boldsymbol{\xi}$$

• Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow \{\boldsymbol{\xi}^{\rho\mu}\} \rightarrow \{\{\boldsymbol{\xi}^{\rho\mu\lambda}\}\}$

[Parga, Virasoro (1986); Krogh, Herz (1988)]

Markov process [defn as martingale]: $W(\xi^{\mu_1...\mu_{k+1}}|\xi^{\mu_1...\mu_k})$

 $J_{ij} = \frac{1}{N} \left\{ \sum_{\rho=1}^{M} \frac{\xi_i^{\rho} \xi_j^{\rho}}{q_1} + \sum_{\rho\mu=1}^{M} \frac{(\xi_i^{\rho\mu} - \xi_i^{\rho})(\xi_j^{\rho\mu} - \xi_j^{\rho})}{q_2 - q_1} + \sum_{\rho\mu\lambda=1}^{M} \frac{(\xi_i^{\rho\mu\lambda} - \xi_i^{\rho\mu})(\xi_j^{\rho\mu\lambda} - \xi_j^{\rho\mu})}{1 - q_2} \right\}$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

• Sequences of patterns: $m{\xi}^1 o m{\xi}^2 o \dots m{\xi}^P$ [Sompolinsky, Kanter (1986)]

$$J_{ij} = \frac{1}{N} \sum_{\mu=1}^{P} \xi_i^{\mu+1} \xi_j^{\mu} \qquad \text{Cycles} : \boldsymbol{\xi}^{P+1} = \boldsymbol{\xi}$$

• Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow \{\boldsymbol{\xi}^{\rho\mu}\} \rightarrow \{\{\boldsymbol{\xi}^{\rho\mu\lambda}\}\}$

[Parga, Virasoro (1986); Krogh, Herz (1988)]

Markov process [defn as martingale]: $W(\xi^{\mu_1...\mu_{k+1}}|\xi^{\mu_1...\mu_k})$

 $J_{ij} = \frac{1}{N} \left\{ \sum_{\rho=1}^{M} \frac{\xi_i^{\rho} \xi_j^{\rho}}{q_1} + \sum_{\rho\mu=1}^{M} \frac{(\xi_i^{\rho\mu} - \xi_i^{\rho})(\xi_j^{\rho\mu} - \xi_j^{\rho})}{q_2 - q_1} + \sum_{\rho\mu\lambda=1}^{M} \frac{(\xi_i^{\rho\mu\lambda} - \xi_i^{\rho\mu})(\xi_j^{\rho\mu\lambda} - \xi_j^{\rho\mu})}{1 - q_2} \right\}$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

• Sequences of patterns: $oldsymbol{\xi}^1 o oldsymbol{\xi}^2 o \dots oldsymbol{\xi}^P$ [Sompolinsky, Kanter (1986)]

$$J_{ij} = \frac{1}{N} \sum_{\mu=1}^{P} \xi_i^{\mu+1} \xi_j^{\mu} \qquad \text{Cycles} : \boldsymbol{\xi}^{P+1} = \boldsymbol{\xi}$$

• Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow \{\boldsymbol{\xi}^{\rho\mu}\} \rightarrow \{\{\boldsymbol{\xi}^{\rho\mu\lambda}\}\}$

[Parga, Virasoro (1986); Krogh, Herz (1988)]

Markov process [defn as martingale]: $W(\xi^{\mu_1...\mu_{k+1}}|\xi^{\mu_1...\mu_k})$

 $J_{ij} = \frac{1}{N} \left\{ \sum_{\rho=1}^{M} \frac{\xi_i^{\rho} \xi_j^{\rho}}{q_1} + \sum_{\rho\mu=1}^{M} \frac{(\xi_i^{\rho\mu} - \xi_i^{\rho})(\xi_j^{\rho\mu} - \xi_j^{\rho})}{q_2 - q_1} + \sum_{\rho\mu\lambda=1}^{M} \frac{(\xi_i^{\rho\mu\lambda} - \xi_i^{\rho\mu})(\xi_j^{\rho\mu\lambda} - \xi_j^{\rho\mu})}{1 - q_2} \right\}$ $\Rightarrow \text{ Combine and adapt to 0,1 variables.. (for a more general W)}$

Outline

Motivation

- Model inspired by neural networks
 Model definition
 - Results

Introducing TFs: a bipartite graph model

- Model definition
- Percolation theory
- Dynamics
- One-time approximation
- Extensions: Multi-node and self-interactions

<ロ> (四) (四) (三) (三) (三)

- 2

get eqns. for correlations of **n** with η^{ρ} (m_{ρ} , full) and with $\eta^{\rho\mu}$ ($m_{\rho\mu}$, dashed). Here $\rho = 1, 2, 3$.

get eqns. for correlations of n with η^{ρ} (m_{ρ} , full) and with $\eta^{\rho\mu}$ ($m_{\rho\mu}$, dashed). Here $\rho = 1, 2, 3$.

<ロ> (四) (四) (三) (三)

æ

Dependence on noise level

get eqns. for correlations of **n** with η^{ρ} (m_{ρ} , full) and with $\eta^{\rho\mu}$ ($m_{\rho\mu}$, dashed). Here $\rho = 1, 2, 3$.

get eqns. for correlations of **n** with η^{ρ} (m_{ρ} , full) and with $\eta^{\rho\mu}$ ($m_{\rho\mu}$, dashed). Here $\rho = 1, 2, 3$.

get eqns. for correlations of **n** with η^{ρ} (m_{ρ} , full) and with $\eta^{\rho\mu}$ ($m_{\rho\mu}$, dashed). Here $\rho = 1, 2, 3$.

Note: de-differentiation takes $\mathcal{O}(10)$ cycles.

[R Hannam, AA, R Kühn, J Phys A (2017)]

(日) (部) (王) (王)

æ

 \bullet Apply direct perturbation to genes to drive transition from somatic \rightarrow stem cell

 \bullet Apply direct perturbation to genes to drive transition from somatic \rightarrow stem cell

 \bullet Apply direct perturbation to genes to drive transition from somatic \rightarrow stem cell

Correlations vs fraction q of perturbed genes, T = 0.01.

<ロ> (四) (四) (三) (三) (三)

 \bullet Apply direct perturbation to genes to drive transition from somatic \rightarrow stem cell

Correlations vs fraction q of perturbed genes, T = 0.01.

Critical fraction of genes $q_r \in [0.1, 0.2]$ (when $T \nearrow$)

[R Hannam, AA, R Kühn, J Phys A (2017)]

(日) (四) (문) (문) (문)

 $N_r\simeq 0.1N\simeq 2,500$ \Rightarrow $q_rN_r\simeq 250$ - 500 genes

 $N_r\simeq 0.1N\simeq 2,500$ \Rightarrow $q_rN_r\simeq 250$ - 500 genes

 $N_r \simeq 0.1 N \simeq 2,500 \qquad \Rightarrow \qquad q_r N_r \simeq 250$ - 500 genes

Also:

• each Yamanaka TF involved in regulating $\mathcal{O}(100)$ genes

 $N_r \simeq 0.1 N \simeq 2,500 \qquad \Rightarrow \qquad q_r N_r \simeq 250$ - 500 genes

Also:

• each Yamanaka TF involved in regulating $\mathcal{O}(100)$ genes

 $N_r\simeq 0.1N\simeq 2,500$ \Rightarrow $q_rN_r\simeq$ 250 - 500 genes

Also:

each Yamanaka TF involved in regulating O(100) genes
 ⇒ can perturb q_rN_r genes with O(3-5) TFs! (Yamanaka territory!)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで
• If we include in the system only regulatory genes:

 $N_r\simeq 0.1N\simeq 2,500$ \Rightarrow $q_rN_r\simeq$ 250 - 500 genes

Also:

each Yamanaka TF involved in regulating O(100) genes
 ⇒ can perturb q_rN_r genes with O(3-5) TFs! (Yamanaka territory!)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Q: Biological grounds for interactions?

Outline

Motivation

- 2 Model inspired by neural networks
 - Model definition
 - Results

Introducing TFs: a bipartite graph model

- Model definition
- Percolation theory
- Dynamics
- One-time approximation
- Extensions: Multi-node and self-interactions

<ロ> (四) (四) (三) (三) (三)

- 2

・ロト ・四ト ・ヨト ・ヨト

- 2

Different types of logic for TFs:

Different types of logic for TFs:

• AND: TF μ 'ON' if all contributing genes 'ON'

$$\tau_{\mu}(t) = \prod_{j:\eta_j^{\mu}=1} n_j(t)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへの

Different types of logic for TFs:

• AND: TF μ 'ON' if all contributing genes 'ON'

$$\tau_{\mu}(t) = \prod_{j:\eta_j^{\mu}=1} n_j(t)$$

• **OR**: TF μ 'ON' if at least one contributing gene 'ON'

$$\tau_{\mu}(t) = \frac{1}{c_{\mu}^{\text{in}}} \sum_{j} \eta_{j}^{\mu} n_{j}(t)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

OR: linear threshold model

OR: linear threshold model

$$n_i(t+1) = \Theta\left[\sum_j \underbrace{\sum_{\mu} \frac{\xi_i^{\mu} \eta_j^{\mu}}{c_{\mu}^{in}}}_{J_{ij}} n_j(t) - \vartheta_i - z_i(t)\right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

OR: linear threshold model

$$n_i(t+1) = \Theta\left[\sum_j \underbrace{\sum_{\mu} \frac{\xi_i^{\mu} \eta_j^{\mu}}{c_{\mu}^{\text{in}}}}_{J_{i_i}} n_j(t) - \vartheta_i - z_i(t)\right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

OR: linear threshold model

$$n_i(t+1) = \Theta\left[\sum_j \underbrace{\sum_{\mu} \frac{\xi_i^{\mu} \eta_j^{\mu}}{c_{\mu}^{\text{in}}}}_{J_{i_i}} n_j(t) - \vartheta_i - z_i(t)\right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

OR: linear threshold model

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Reminiscent of Neural networks with sparse patterns $\xi_i^{\mu} = 0, \pm 1$

$$J_{ij} = \sum_{\mu} \frac{\xi_i^{\mu} \xi_j^{\mu}}{c_{\mu}}$$

OR: linear threshold model

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Reminiscent of Neural networks with sparse patterns $\xi_i^{\mu} = 0, \pm 1$

$$J_{ij} = \sum_{\mu} \frac{\xi_i^{\mu} \xi_j^{\mu}}{c_{\mu}}$$

OR: linear threshold model

• Reminiscent of Neural networks with sparse patterns $\xi_i^{\mu} = 0, \pm 1$

 \Rightarrow

$$J_{ij} = \sum_{\mu} \frac{\xi_i^{\mu} \xi_j^{\mu}}{c_{\mu}}$$

parallel retrieval of patterns

[Agliari, **AA**, Barra, Coolen, Tantari, JPA (2013)] [Sollich, Tantari, **AA**, Barra, PRL (2014)]

《曰》 《聞》 《理》 《理》 三世

OR: linear threshold model

• Reminiscent of Neural networks with sparse patterns $\xi_i^{\mu} = 0, \pm 1$

$$J_{ij} = \sum_{\mu} \frac{\xi_i^{\mu} \xi_j^{\mu}}{c_{\mu}} \Rightarrow \text{parallel retrieval of patterns}$$
[Agliari, AA, Barra, Coolen, Tantari, JPA (2013)]
[Sollich, Tantari, AA, Barra, PRL (2014)]

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

BUT: here $\xi_i^{\mu} \in \{0, \pm 1\}$ and $\eta_i^{\mu} \in \{0, 1\} \Rightarrow J_{ij} \neq J_{ji}$

OR: linear threshold model

• Reminiscent of Neural networks with sparse patterns $\xi_i^{\mu} = 0, \pm 1$

$$J_{ij} = \sum_{\mu} \frac{\xi_i^{\mu} \xi_j^{\mu}}{c_{\mu}} \Rightarrow \text{parallel retrieval of patterns}$$
[Agliari, AA, Barra, Coolen, Tantari, JPA (2013)]
[Sollich, Tantari, AA, Barra, PRL (2014)]

BUT: here $\xi_i^{\mu} \in \{0, \pm 1\}$ and $\eta_i^{\mu} \in \{0, 1\} \Rightarrow J_{ij} \neq J_{ji}$

AND: non-linear threshold model

$$n_i(t+1) = \Theta\left[\sum_{\mu} \xi_i^{\mu} \prod_{j:\eta_i^{\mu}=1} n_j(t) - \vartheta_i - z_i(t)\right]$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

OR: linear threshold model

• Reminiscent of Neural networks with sparse patterns $\xi_i^{\mu} = 0, \pm 1$

$$J_{ij} = \sum_{\mu} \frac{\xi_i^{\mu} \xi_j^{\mu}}{c_{\mu}} \Rightarrow \text{parallel retrieval of patterns}$$
[Agliari, AA, Barra, Coolen, Tantari, JPA (2013)]
[Sollich, Tantari, AA, Barra, PRL (2014)]

BUT: here $\xi_i^{\mu} \in \{0, \pm 1\}$ and $\eta_i^{\mu} \in \{0, 1\} \Rightarrow J_{ij} \neq J_{ji}$

AND: non-linear threshold model

$$n_i(t+1) = \Theta[\sum_{\mu} \xi_i^{\mu} \prod_{j:\eta_i^{\mu}=1} n_j(t) - \vartheta_i - z_i(t)]$$

● asymmetric multi-node interactions (as opposed to pairwise)

Outline

Motivation

- 2 Model inspired by neural networks
 - Model definition
 - Results

Introducing TFs: a bipartite graph model

- Model definition
- Percolation theory
- Dynamics
- One-time approximation
- Extensions: Multi-node and self-interactions

<ロ> (四) (四) (三) (三) (三)

- 2

Q: For which model's parameters can have non-trivial attractors?

Q: For which model's parameters can have non-trivial attractors? **A**: Noisy finite systems are *ergodic* \Rightarrow **Giant Component (GC)** for multiplicity of attractors \Rightarrow Percolation theory

Q: For which model's parameters can have non-trivial attractors? **A**: Noisy finite systems are *ergodic* \Rightarrow **Giant Component (GC)** for multiplicity of attractors \Rightarrow Percolation theory

▲□▶ ▲圖▶ ▲理▶ ▲理▶ _ 理 _ .

AND:

• GC stable if $\langle c^{\rm in} \rangle_{\rm TF} P_G(d^{\rm in}=1) < 1$

 \Rightarrow TFs should be small complexes

Q: For which model's parameters can have non-trivial attractors? **A**: Noisy finite systems are *ergodic* \Rightarrow **Giant Component (GC)** for multiplicity of attractors \Rightarrow Percolation theory

AND:

• GC stable if
$$\langle c^{
m in}
angle_{
m TF} P_G(d^{
m in}=1) < 1$$

 \Rightarrow TFs should be small complexes

cin

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Q: For which model's parameters can have non-trivial attractors? **A**: Noisy finite systems are *ergodic* \Rightarrow **Giant Component (GC)** for multiplicity of attractors \Rightarrow Percolation theory

 c^{in}

<ロト <四ト <注入 <注下 <注下 <

AND:

• GC stable if
$$\langle c^{
m in}
angle_{
m TF} P_G(d^{
m in}=1) < 1$$

 \Rightarrow TFs should be small complexes

• GC only stable solution if $\alpha \langle c^{\text{out}} \rangle_{\text{TF}} P_{\text{TF}}(c^{\text{in}} = 1) > 1$

Q: For which model's parameters can have non-trivial attractors? **A**: Noisy finite systems are *ergodic* \Rightarrow **Giant Component (GC)** for multiplicity of attractors \Rightarrow Percolation theory

AND:

• GC stable if $\langle c^{\rm in} \rangle_{\rm TF} P_G(d^{\rm in}=1) < 1$

 \Rightarrow TFs should be small complexes

(日) (四) (문) (문) (문)

• GC only stable solution if $\alpha \langle c^{\text{out}} \rangle_{\text{TF}} P_{\text{TF}}(c^{\text{in}} = 1) > 1$

 \Rightarrow TFs should regulate sufficiently many genes

Q: For which model's parameters can have non-trivial attractors? **A**: Noisy finite systems are *ergodic* \Rightarrow **Giant Component (GC)** for multiplicity of attractors \Rightarrow Percolation theory

AND:

• GC stable if
$$\langle c^{\rm in} \rangle_{\rm TF} P_G(d^{\rm in}=1) < 1$$

 \Rightarrow TFs should be small complexes

(日) (國) (필) (필) (필) 표

• GC only stable solution if $\alpha \langle c^{\rm out} \rangle_{\rm TF} P_{\rm TF}(c^{\rm in}=1) > 1$

 \Rightarrow TFs should regulate sufficiently many genes

OR:

GC only stable option for
$$|lpha\langle c^{
m in}
angle_{
m TF}\langle c^{
m out}
angle_{
m TF}>1$$

Q: For which model's parameters can have non-trivial attractors? **A**: Noisy finite systems are *ergodic* \Rightarrow **Giant Component (GC)** for multiplicity of attractors \Rightarrow Percolation theory

AND:

• GC stable if
$$\langle c^{\rm in} \rangle_{\rm TF} P_G(d^{\rm in}=1) < 1$$

 \Rightarrow TFs should be small complexes

(日) (國) (필) (필) (필) 표

• GC only stable solution if $\alpha \langle c^{\rm out} \rangle_{\rm TF} P_{\rm TF}(c^{\rm in}=1) > 1$

 \Rightarrow TFs should regulate sufficiently many genes

OR:

GC only stable option for
$$|lpha\langle c^{
m in}
angle_{
m TF}\langle c^{
m out}
angle_{
m TF}>1$$

Q: For which model's parameters can have non-trivial attractors? **A**: Noisy finite systems are *ergodic* \Rightarrow **Giant Component (GC)** for multiplicity of attractors \Rightarrow Percolation theory

AND:

• GC stable if
$$\langle c^{\rm in} \rangle_{\rm TF} P_G(d^{\rm in}=1) < 1$$

 \Rightarrow TFs should be small complexes

cin

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □ □

• GC only stable solution if $\alpha \langle c^{\text{out}} \rangle_{\text{TF}} P_{\text{TF}}(c^{\text{in}} = 1) > 1$

 \Rightarrow TFs should regulate sufficiently many genes

OR:

) GC only stable option for
$$\left| \, \alpha \langle c^{\rm in} \rangle_{\rm TF} \langle c^{\rm out} \rangle_{\rm TF} > 1 \, \right|$$

TFs indeed small complexes which regulate many genes!

[Hannam, Kühn, AA, JPA (2019); Torrisi, Kühn, AA, JSTAT (2020)]

Outline

Motivation

- 2 Model inspired by neural networks
 - Model definition
 - Results

Introducing TFs: a bipartite graph model

- Model definition
- Percolation theory

Dynamics

- One-time approximation
- Extensions: Multi-node and self-interactions

<ロ> (四) (四) (三) (三) (三)

- E

• Linear threshold model

$$n_i(t+1) = \Theta \left[h_i \left(\boldsymbol{n}_{\partial_i}(t) \right) - \vartheta_i - z_i(t) \right] \qquad h_i \left(\boldsymbol{n}_{\partial_i}(t) \right) = \sum_j J_{ij} n_j(t)$$

• Linear threshold model

$$n_i(t+1) = \Theta \left[h_i \left(\boldsymbol{n}_{\partial_i}(t) \right) - \vartheta_i - z_i(t) \right] \qquad h_i \left(\boldsymbol{n}_{\partial_i}(t) \right) = \sum_j J_{ij} n_j(t)$$

• Linear threshold model

$$n_{i}(t+1) = \Theta \left[h_{i} \left(\boldsymbol{n}_{\partial_{i}}(t) \right) - \vartheta_{i} - z_{i}(t) \right] \qquad h_{i} \left(\boldsymbol{n}_{\partial_{i}}(t) \right) = \sum_{j} J_{ij} n_{j}(t)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Linear threshold model

$$n_{i}(t+1) = \Theta \left[h_{i} \left(\boldsymbol{n}_{\partial_{i}}(t) \right) - \vartheta_{i} - z_{i}(t) \right] \qquad h_{i} \left(\boldsymbol{n}_{\partial_{i}}(t) \right) = \sum_{j} J_{ij} n_{j}(t)$$

$$\stackrel{i \bullet \quad J_{ij} \quad \bullet^{j}}{=} z_{i}(t) \text{ random with } \operatorname{Prob}[z \leq x] = \Phi_{T}(x)$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

• Linear threshold model

$$\begin{split} n_i(t+1) = &\Theta \big[h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) - \vartheta_i - z_i(t) \big] \qquad h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) = \sum_j J_{ij} \, n_j(t) \\ \stackrel{\text{i}_{\bigoplus} \quad J_{ij}}{=} \quad \boldsymbol{p}_{T}(x) \\ \mathbf{a}_i(t) \text{ random with } \operatorname{Prob}[z \leq x] = \Phi_T(x) \end{split}$$

• Interested in activation probability $P_i(t) = \operatorname{Prob}(n_i(t) = 1)$

$$P_i(t+1) = \langle \Phi_T (h_i(\boldsymbol{n}_{\partial_i}) - \vartheta_i) \rangle_{\boldsymbol{n}_{\partial_i}, t} \qquad \langle \dots \rangle_{\boldsymbol{n}_{\partial_i}, t} = \sum_{\boldsymbol{n}_{\partial_i}} \dots P(\boldsymbol{n}_{\partial_i}, t)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Linear threshold model

$$\begin{split} n_i(t+1) = &\Theta \big[h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) - \vartheta_i - z_i(t) \big] \qquad h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) = \sum_j J_{ij} \, n_j(t) \\ \bullet \quad J_{ij} \quad \bullet^j \qquad z_i(t) \text{ random with } \operatorname{Prob}[z \le x] = \Phi_T(x) \end{split}$$

• Interested in activation probability $P_i(t) = \operatorname{Prob}(n_i(t) = 1)$

$$P_i(t+1) = \left\langle \Phi_T \left(h_i(\boldsymbol{n}_{\partial_i}) - \vartheta_i \right) \right\rangle_{\boldsymbol{n}_{\partial_i}, t} \qquad \langle \dots \rangle_{\boldsymbol{n}_{\partial_i}, t} = \sum_{\boldsymbol{n}_{\partial_i}} \dots P(\boldsymbol{n}_{\partial_i}, t)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

• Linear threshold model

$$\begin{split} n_i(t+1) = &\Theta \big[h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) - \vartheta_i - z_i(t) \big] \qquad h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) = \sum_j J_{ij} \, n_j(t) \\ \bullet \quad J_{ij} \quad \bullet^j \qquad z_i(t) \text{ random with } \operatorname{Prob}[z \le x] = \Phi_T(x) \end{split}$$

• Interested in activation probability $P_i(t) = \operatorname{Prob}(n_i(t) = 1)$

$$P_i(t+1) = \left\langle \Phi_T \left(h_i(\boldsymbol{n}_{\partial_i}) - \vartheta_i \right) \right\rangle_{\boldsymbol{n}_{\partial_i}, t} \qquad \langle \dots \rangle_{\boldsymbol{n}_{\partial_i}, t} = \sum_{\boldsymbol{n}_{\partial_i}} \dots P(\boldsymbol{n}_{\partial_i}, t)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

• Linear threshold model

$$\begin{split} n_i(t+1) = &\Theta \big[h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) - \vartheta_i - z_i(t) \big] \qquad h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) = \sum_j J_{ij} \, n_j(t) \\ \bullet \quad J_{ij} \quad \bullet^j \qquad z_i(t) \text{ random with } \operatorname{Prob}[z \le x] = \Phi_T(x) \end{split}$$

• Interested in activation probability $P_i(t) = \operatorname{Prob}(n_i(t) = 1)$

$$P_{i}(t+1) = \left\langle \Phi_{T} \left(h_{i}(\boldsymbol{n}_{\partial_{i}}) - \vartheta_{i} \right) \right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \qquad \langle \ldots \rangle_{\boldsymbol{n}_{\partial_{i}}, t} = \sum_{\boldsymbol{n}_{\partial_{i}}} \ldots P(\boldsymbol{n}_{\partial_{i}}, t)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

• Linear threshold model

$$\begin{split} n_i(t+1) = &\Theta \big[h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) - \vartheta_i - z_i(t) \big] \qquad h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) = \sum_j J_{ij} n_j(t) \\ \bullet \quad J_{ij} \quad \bullet^j \qquad z_i(t) \text{ random with } \operatorname{Prob}[z \le x] = \Phi_T(x) \end{split}$$

• Interested in activation probability $P_i(t) = \operatorname{Prob}(n_i(t) = 1)$

$$P_{i}(t+1) = \left\langle \Phi_{T} \left(h_{i}(\boldsymbol{n}_{\partial_{i}}) - \vartheta_{i} \right) \right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \qquad \langle \ldots \rangle_{\boldsymbol{n}_{\partial_{i}}, t} = \sum_{\boldsymbol{n}_{\partial_{i}}} \ldots P(\boldsymbol{n}_{\partial_{i}}, t)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

• Linear threshold model

$$\begin{split} n_i(t+1) = &\Theta \big[h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) - \vartheta_i - z_i(t) \big] \qquad h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) = \sum_j J_{ij} n_j(t) \\ \bullet \quad J_{ij} \quad \bullet^j \qquad z_i(t) \text{ random with } \operatorname{Prob}[z \le x] = \Phi_T(x) \end{split}$$

• Interested in activation probability $P_i(t) = \operatorname{Prob}(n_i(t) = 1)$

$$P_{i}(t+1) = \left\langle \Phi_{T} \left(h_{i}(\boldsymbol{n}_{\partial_{i}}) - \vartheta_{i} \right) \right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \qquad \langle \ldots \rangle_{\boldsymbol{n}_{\partial_{i}}, t} = \sum_{\boldsymbol{n}_{\partial_{i}}} \ldots P(\boldsymbol{n}_{\partial_{i}}, t)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

• Linear threshold model

$$\begin{split} n_i(t+1) = &\Theta \big[h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) - \vartheta_i - z_i(t) \big] \qquad h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) = \sum_j J_{ij} n_j(t) \\ \bullet \quad J_{ij} \quad \bullet^j \qquad z_i(t) \text{ random with } \operatorname{Prob}[z \le x] = \Phi_T(x) \end{split}$$

• Interested in activation probability $P_i(t) = \operatorname{Prob}(n_i(t) = 1)$

$$P_i(t+1) = \left\langle \Phi_T \left(h_i(\boldsymbol{n}_{\partial_i}) - \vartheta_i \right) \right\rangle_{\boldsymbol{n}_{\partial_i}, t} \qquad \langle \dots \rangle_{\boldsymbol{n}_{\partial_i}, t} = \sum_{\boldsymbol{n}_{\partial_i}} \dots P(\boldsymbol{n}_{\partial_i}, t)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

$$P^{(i)}(\boldsymbol{n}_{\partial_i}) = \prod_{j \in \partial_i} P^{(i)}_j(n_j)$$

• Fully-asymmetric $J_{ij}J_{ji}\!=\!0$ [Neri & Bollé, JSTAT (2009)]

• Linear threshold model

$$\begin{split} n_i(t+1) = &\Theta \big[h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) - \vartheta_i - z_i(t) \big] \qquad h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) = \sum_j J_{ij} n_j(t) \\ \bullet \quad J_{ij} \quad \bullet^j \qquad z_i(t) \text{ random with } \operatorname{Prob}[z \le x] = \Phi_T(x) \end{split}$$

• Interested in activation probability $P_i(t) = \operatorname{Prob}(n_i(t) = 1)$

$$P_i(t+1) = \left\langle \Phi_T \left(h_i(\boldsymbol{n}_{\partial_i}) - \vartheta_i \right) \right\rangle_{\boldsymbol{n}_{\partial_i}, t} \qquad \langle \dots \rangle_{\boldsymbol{n}_{\partial_i}, t} = \sum_{\boldsymbol{n}_{\partial_i}} \dots P(\boldsymbol{n}_{\partial_i}, t)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

$$P^{(i)}(\boldsymbol{n}_{\partial_i}) = \prod_{j \in \partial_i} P^{(i)}_j(n_j)$$

• Fully-asymmetric $J_{ij}J_{ji}\!=\!0$ [Neri & Bollé, JSTAT (2009)]

• Linear threshold model

$$\begin{split} n_i(t+1) = &\Theta \big[h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) - \vartheta_i - z_i(t) \big] \qquad h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) = \sum_j J_{ij} n_j(t) \\ \bullet \quad J_{ij} \quad \bullet^j \qquad z_i(t) \text{ random with } \operatorname{Prob}[z \le x] = \Phi_T(x) \end{split}$$

• Interested in activation probability $P_i(t) = \operatorname{Prob}(n_i(t) = 1)$

$$P_i(t+1) = \left\langle \Phi_T \left(h_i(\boldsymbol{n}_{\partial_i}) - \vartheta_i \right) \right\rangle_{\boldsymbol{n}_{\partial_i}, t} \qquad \langle \dots \rangle_{\boldsymbol{n}_{\partial_i}, t} = \sum_{\boldsymbol{n}_{\partial_i}} \dots P(\boldsymbol{n}_{\partial_i}, t)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

$$P^{(i)}(\boldsymbol{n}_{\partial_i}) = \prod_{j \in \partial_i} P^{(i)}_j(n_j)$$

• Fully-asymmetric $J_{ij}J_{ji}\!=\!0$ [Neri & Bollé, JSTAT (2009)]

• Linear threshold model

$$\begin{split} n_i(t+1) = &\Theta \big[h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) - \vartheta_i - z_i(t) \big] \qquad h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) = \sum_j J_{ij} n_j(t) \\ \bullet \quad J_{ij} \quad \bullet^j \qquad z_i(t) \text{ random with } \operatorname{Prob}[z \le x] = \Phi_T(x) \end{split}$$

• Interested in activation probability $P_i(t) = \operatorname{Prob}(n_i(t) = 1)$

$$P_i(t+1) = \langle \Phi_T (h_i(\boldsymbol{n}_{\partial_i}) - \vartheta_i) \rangle_{\boldsymbol{n}_{\partial_i}, t} \qquad \langle \dots \rangle_{\boldsymbol{n}_{\partial_i}, t} = \sum_{\boldsymbol{n}_{\partial_i}} \dots P(\boldsymbol{n}_{\partial_i}, t)$$

• Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

$$P^{(i)}(\boldsymbol{n}_{\partial_i}) = \prod_{j \in \partial_i} P^{(i)}_j(n_j)$$

• Fully-asymmetric $J_{ij}J_{ji}\!=\!0$ [Neri & Bollé, JSTAT (2009)]

$$P(\boldsymbol{n}_{\partial_i}, t) = P^{(i)}(\boldsymbol{n}_{\partial_i}, t)$$

• Linear threshold model

$$\begin{split} n_i(t+1) = &\Theta \big[h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) - \vartheta_i - z_i(t) \big] \qquad h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) = \sum_j J_{ij} n_j(t) \\ \bullet \quad J_{ij} \quad \bullet^j \qquad z_i(t) \text{ random with } \operatorname{Prob}[z \le x] = \Phi_T(x) \end{split}$$

• Interested in activation probability $P_i(t) = \operatorname{Prob}(n_i(t) = 1)$

$$P_i(t+1) = \langle \Phi_T (h_i(\boldsymbol{n}_{\partial_i}) - \vartheta_i) \rangle_{\boldsymbol{n}_{\partial_i}, t} \qquad \langle \dots \rangle_{\boldsymbol{n}_{\partial_i}, t} = \sum_{\boldsymbol{n}_{\partial_i}} \dots P(\boldsymbol{n}_{\partial_i}, t)$$

• Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

$$P^{(i)}(\boldsymbol{n}_{\partial_i}) = \prod_{j \in \partial_i} P^{(i)}_j(n_j)$$

• Fully-asymmetric $J_{ij}J_{ji}\!=\!0$ [Neri & Bollé, JSTAT (2009)]

$$P(\boldsymbol{n}_{\partial_i}, t) = P^{(i)}(\boldsymbol{n}_{\partial_i}, t)$$

• Linear threshold model

$$\begin{split} n_i(t+1) = &\Theta \big[h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) - \vartheta_i - z_i(t) \big] \qquad h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) = \sum_j J_{ij} n_j(t) \\ \bullet \quad J_{ij} \quad \bullet^j \qquad z_i(t) \text{ random with } \operatorname{Prob}[z \le x] = \Phi_T(x) \end{split}$$

• Interested in activation probability $P_i(t) = \operatorname{Prob}(n_i(t) = 1)$

$$P_i(t+1) = \left\langle \Phi_T \left(h_i(\boldsymbol{n}_{\partial_i}) - \vartheta_i \right) \right\rangle_{\boldsymbol{n}_{\partial_i}, t} \qquad \langle \dots \rangle_{\boldsymbol{n}_{\partial_i}, t} = \sum_{\boldsymbol{n}_{\partial_i}} \dots P(\boldsymbol{n}_{\partial_i}, t)$$

• Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

$$P^{(i)}(\boldsymbol{n}_{\partial_i}) = \prod_{j \in \partial_i} P^{(i)}_j(n_j)$$

• Fully-asymmetric $J_{ij}J_{ji}=0$ [Neri & Bollé, JSTAT (2009)]

$$P(\boldsymbol{n}_{\partial_i}, t) = P^{(i)}(\boldsymbol{n}_{\partial_i}, t) = \prod_{j \in \partial_i} P_j(n_j, t)$$

• Linear threshold model

$$\begin{split} n_i(t+1) = &\Theta \big[h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) - \vartheta_i - z_i(t) \big] \qquad h_i \big(\boldsymbol{n}_{\partial_i}(t) \big) = \sum_j J_{ij} n_j(t) \\ \bullet \quad J_{ij} \quad \bullet^j \qquad z_i(t) \text{ random with } \operatorname{Prob}[z \le x] = \Phi_T(x) \end{split}$$

• Interested in activation probability $P_i(t) = \operatorname{Prob}(n_i(t) = 1)$

$$P_i(t+1) = \left\langle \Phi_T \left(h_i(\boldsymbol{n}_{\partial_i}) - \vartheta_i \right) \right\rangle_{\boldsymbol{n}_{\partial_i}, t} \qquad \left\langle \dots \right\rangle_{\boldsymbol{n}_{\partial_i}, t} = \sum_{\boldsymbol{n}_{\partial_i}} \dots P(\boldsymbol{n}_{\partial_i}, t)$$

• Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

$$P^{(i)}(\boldsymbol{n}_{\partial_i}) = \prod_{j \in \partial_i} P^{(i)}_j(n_j)$$

 $\boldsymbol{n}_{\partial_i}$

• Fully-asymmetric $J_{ij}J_{ji} = 0$ [Neri & Bollé, JSTAT (2009)]

$$P(\boldsymbol{n}_{\partial_i}, t) = P^{(i)}(\boldsymbol{n}_{\partial_i}, t) = \prod_{j \in \partial_i} P_j(n_j, t)$$
$$P_i(t+1) = \sum \Phi_T \left(h_i(\boldsymbol{n}_{\partial_i}) - \vartheta_i \right) \prod P_j(t)^{n_j} [1 - P_j(t)]^1$$

 $-n_i$

Solve iteratively: t = 0, 1, ... BUT exponential complexity: $2^{|\partial_i|}$

Solve iteratively: $t = 0, 1, \ldots$ BUT exponential complexity: $2^{|\partial_i|}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• For binary $J_{ij} = \pm J$: $\mathcal{O}(\sum_i 2^{|\partial_i|}) \Rightarrow \mathcal{O}(\sum_i |\partial_i|^2)$

Solve iteratively: $t = 0, 1, \ldots$ BUT exponential complexity: $2^{|\partial_i|}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• For binary $J_{ij} = \pm J$: $\mathcal{O}(\sum_i 2^{|\partial_i|}) \Rightarrow \mathcal{O}(\sum_i |\partial_i|^2)$

Solve iteratively: $t = 0, 1, \ldots$ BUT exponential complexity: $2^{|\partial_i|}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

• For binary $J_{ij} = \pm J$: $\mathcal{O}(\sum_i 2^{|\partial_i|}) \Rightarrow \mathcal{O}(\sum_i |\partial_i|^2)$

via Dynamic programming

Solve iteratively: $t = 0, 1, \ldots$ BUT exponential complexity: $2^{|\partial_i|}$

• For binary
$$J_{ij} = \pm J$$
: $\mathcal{O}(\sum_i 2^{|\partial_i|}) \Rightarrow \mathcal{O}(\sum_i |\partial_i|^2)$

via Dynamic programming

[Torrisi, AA, Kühn, PRE (2021)] https://github.com/g-torr/

Solve iteratively: $t = 0, 1, \ldots$ BUT exponential complexity: $2^{|\partial_i|}$

• For binary
$$J_{ij} = \pm J$$
: $\mathcal{O}(\sum_i 2^{|\partial_i|}) \Rightarrow \mathcal{O}(\sum_i |\partial_i|^2)$

via Dynamic programming

[Torrisi, AA, Kühn, PRE (2021)] https://github.com/g-torr/

• Power-law: $p(k)\sim\gamma k^{-\gamma-1}$, $\gamma\!=\!2.81;~N\!=\!2\!\cdot\!10^5$, $k_{\rm max}=800$

Solve iteratively: $t = 0, 1, \ldots$ BUT exponential complexity: $2^{|\partial_i|}$

• For binary
$$J_{ij} = \pm J$$
: $\mathcal{O}(\sum_i 2^{|\partial_i|}) \Rightarrow \mathcal{O}(\sum_i |\partial_i|^2)$

via Dynamic programming

[Torrisi, AA, Kühn, PRE (2021)] https://github.com/g-torr/

• Power-law: $p(k)\sim\gamma k^{-\gamma-1}$, $\gamma\!=\!2.81;~N\!=\!2\!\cdot\!10^5$, $k_{\rm max}=800$

Solve iteratively: t = 0, 1, ... BUT exponential complexity: $2^{|\partial_i|}$

• For binary $J_{ij} = \pm J$: $\mathcal{O}(\sum_i 2^{|\partial_i|}) \Rightarrow \mathcal{O}(\sum_i |\partial_i|^2)$

via Dynamic programming

[Torrisi, AA, Kühn, PRE (2021)] https://github.com/g-torr/

• Power-law: $p(k)\sim\gamma k^{-\gamma-1}$, $\gamma\!=\!2.81;~N\!=\!2\!\cdot\!10^5$, $k_{\rm max}=800$

Solve iteratively: t = 0, 1, ... BUT exponential complexity: $2^{|\partial_i|}$

• For binary $J_{ij} = \pm J$: $\mathcal{O}(\sum_i 2^{|\partial_i|}) \Rightarrow \mathcal{O}(\sum_i |\partial_i|^2)$

via Dynamic programming

[Torrisi, **AA**, Kühn, PRE (2021)]

• Power-law:
$$p(k) \sim \gamma k^{-\gamma-1}$$
, $\gamma = 2.81$; $N = 2 \cdot 10^5$, $k_{\rm max} = 800$

Results $P(J_{ij} \neq 0) = \eta \delta(J_{ij} - J) + (1 - \eta) \delta(J_{ij} + J), \quad \eta = 0.62$

Results $P(J_{ij} \neq 0) = \eta \delta(J_{ij} - J) + (1 - \eta) \delta(J_{ij} + J), \quad \eta = 0.62$

æ

(日) (월) (분) (분)

Results
$$P(J_{ij} \neq 0) = \eta \delta(J_{ij} - J) + (1 - \eta) \delta(J_{ij} + J), \quad \eta = 0.62$$

<ロ> (四) (四) (三) (三) (三)

2

• Let
$$k_i = 1$$
, $\partial_i = \{j\}$, $P_j = P$:

$$P_i = P\Phi_T(\pm J - \vartheta) + (1 - P)\Phi_T(-\vartheta) \equiv \rho_{\pm}(P)$$

Results
$$P(J_{ij} \neq 0) = \eta \delta(J_{ij} - J) + (1 - \eta) \delta(J_{ij} + J), \quad \eta = 0.62$$

<ロ> (四) (四) (三) (三) (三)

2

• Let
$$k_i = 1$$
, $\partial_i = \{j\}$, $P_j = P$:

$$P_i = P\Phi_T(\pm J - \vartheta) + (1 - P)\Phi_T(-\vartheta) \equiv \rho_{\pm}(P)$$

Results
$$P(J_{ij} \neq 0) = \eta \delta(J_{ij} - J) + (1 - \eta) \delta(J_{ij} + J), \quad \eta = 0.62$$

• Let
$$k_i = 1$$
, $\partial_i = \{j\}$, $P_j = P$:
 $P_i = P\Phi_T(\pm J - \vartheta) + (1 - P)\Phi_T(-\vartheta) \equiv \rho_{\pm}(P)$
e.g. in FM chains $P_{i+1} = \rho_+(P_i) \implies p^* = \rho_+(p^*)$

Results
$$P(J_{ij} \neq 0) = \eta \delta(J_{ij} - J) + (1 - \eta) \delta(J_{ij} + J), \quad \eta = 0.62$$

• Multimodal distribution \Rightarrow node heterogeneities

• Let
$$k_i = 1$$
, $\partial_i = \{j\}$, $P_j = P$:
 $P_i = P\Phi_T(\pm J - \vartheta) + (1 - P)\Phi_T(-\vartheta) \equiv \rho_{\pm}(P)$
e.g. in FM chains $P_{i+1} = \rho_+(P_i) \implies p^* = \rho_+(p^*)$
Note: in fully asymmetric nets only **one** attractor

Results
$$P(J_{ij} \neq 0) = \eta \delta(J_{ij} - J) + (1 - \eta) \delta(J_{ij} + J), \quad \eta = 0.62$$

• Multimodal distribution \Rightarrow node heterogeneities

• Let
$$k_i = 1$$
, $\partial_i = \{j\}$, $P_j = P$:
 $P_i = P\Phi_T(\pm J - \vartheta) + (1 - P)\Phi_T(-\vartheta) \equiv \rho_{\pm}(P)$
e.g. in FM chains $P_{i+1} = \rho_+(P_i) \implies p^* = \rho_+(p^*)$

Note: in fully asymmetric nets only one attractor [Torrisi, AA, Kühn, PRE (2021)]

Outline

Motivation

- 2 Model inspired by neural networks
 - Model definition
 - Results

Introducing TFs: a bipartite graph model

- Model definition
- Percolation theory
- Dynamics
- One-time approximation
- Extensions: Multi-node and self-interactions

With **bi-directional** links $P^{(i)}(n_{\partial_i}, t) \neq \prod_{j \in \partial_i} P^{(i)}(n_j, t)$ BUT

With **bi-directional** links $P^{(i)}(\boldsymbol{n}_{\partial_i}, t) \neq \prod_{j \in \partial_i} P^{(i)}(n_j, t)$ BUT $P^{(i)}(\boldsymbol{n}_{\partial_i}^{0...T} | \boldsymbol{n}_i^{0...T}) = \prod_{j \in \partial_i} P_j^{(i)}(n_j^{0...T} | \boldsymbol{n}_i^{0...T})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

With **bi-directional** links $P^{(i)}(\boldsymbol{n}_{\partial_i}, t) \neq \prod_{j \in \partial_i} P^{(i)}(n_j, t)$ BUT $P^{(i)}(\boldsymbol{n}_{\partial i}^{0...T} | \boldsymbol{n}_i^{0...T}) = \prod_{j \in \partial_i} P_j^{(i)}(n_j^{0...T} | \boldsymbol{n}_i^{0...T})$

Have to work with trajectories

$$P_{i}(n_{i}^{0,...,t}) = \sum_{\substack{n_{\partial_{i}}^{0...T}}} (\ldots) \prod_{j \in \partial_{i}} P_{j}^{(i)}(n_{j}^{0...T} | n_{i}^{0...T})$$

With **bi-directional** links $P^{(i)}(\boldsymbol{n}_{\partial_i}, t) \neq \prod_{j \in \partial_i} P^{(i)}(n_j, t)$ BUT $P^{(i)}(\boldsymbol{n}_{\partial i}^{0...T} | \boldsymbol{n}_i^{0...T}) = \prod_{j \in \partial_i} P_j^{(i)}(n_j^{0...T} | \boldsymbol{n}_i^{0...T})$

Have to work with trajectories

$$P_i(n_i^{0,\dots,t}) = \sum_{\boldsymbol{n}_{\partial_i}^{0,\dots,T}} (\dots) \prod_{j \in \partial_i} P_j^{(i)}(n_j^{0,\dots,T} | \boldsymbol{n}_i^{0,\dots,T})$$

Additional complexity in time.. One-time step approximation [Neri Bollé 2009]

$$P^{(i)}(n_j^{0\dots T}|\mathbf{n}_i^{0\dots T}) \simeq P_j^{(i)}(n_j^0) \prod_{s=1}^t P_j^{(i)}(n_j^s|\mathbf{n}_i^{s-1})$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

With **bi-directional** links $P^{(i)}(\boldsymbol{n}_{\partial_i}, t) \neq \prod_{j \in \partial_i} P^{(i)}(n_j, t)$ BUT $P^{(i)}(\boldsymbol{n}_{\partial i}^{0...T} | \boldsymbol{n}_i^{0...T}) = \prod_{j \in \partial_i} P_j^{(i)}(n_j^{0...T} | \boldsymbol{n}_i^{0...T})$

Have to work with trajectories

$$P_i(n_i^{0,\dots,t}) = \sum_{\boldsymbol{n}_{\partial_i}^{0,\dots,T}} (\dots) \prod_{j \in \partial_i} P_j^{(i)}(n_j^{0,\dots,T} | \boldsymbol{n}_i^{0,\dots,T})$$

Additional complexity in time.. One-time step approximation [Neri Bollé 2009]

$$P^{(i)}(n_j^{0...T}|\mathbf{n}_i^{0...T}) \simeq P_j^{(i)}(n_j^0) \prod_{s=1}^t P_j^{(i)}(n_j^s|\mathbf{n}_i^{s-1})$$

 $\Rightarrow \text{ recursion for cavity marginals } P_i^{(\ell)}(n_i^t|n_\ell^{t-1}) \text{ in terms of } P_j^{(i)}(n_j^{t-1}|n_i^{t-2})$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

With **bi-directional** links $P^{(i)}(\boldsymbol{n}_{\partial_i}, t) \neq \prod_{j \in \partial_i} P^{(i)}(n_j, t)$ BUT $P^{(i)}(\boldsymbol{n}_{\partial i}^{0...T} | \boldsymbol{n}_i^{0...T}) = \prod_{j \in \partial_i} P_j^{(i)}(n_j^{0...T} | \boldsymbol{n}_i^{0...T})$

Have to work with trajectories

$$P_i(n_i^{0,\dots,t}) = \sum_{\boldsymbol{n}_{\partial_i}^{0,\dots,T}} (\dots) \prod_{j \in \partial_i} P_j^{(i)}(n_j^{0,\dots,T} | \boldsymbol{n}_i^{0,\dots,T})$$

Additional complexity in time.. One-time step approximation [Neri Bollé 2009]

$$P^{(i)}(n_j^{0...T}|\mathbf{n}_i^{0...T}) \simeq P_j^{(i)}(n_j^0) \prod_{s=1}^t P_j^{(i)}(n_j^s|\mathbf{n}_i^{s-1})$$

 \Rightarrow recursion for cavity marginals $P_i^{(\ell)}(n_i^t|n_\ell^{t-1})$ in terms of $P_j^{(i)}(n_j^{t-1}|n_i^{t-2})$ Similar equation for $P_i(n_i^t)$.. **Both** benefit from dynamic programming!

Consider (i) $J_{ij} = J_{ji}$; (ii) $J_{ij} = -J_{ji}$; (iii) $P(J_{ij}, J_{ji}) = P(J_{ij})P(J_{ji})$

Consider (i) $J_{ij} = J_{ji}$; (ii) $J_{ij} = -J_{ji}$; (iii) $P(J_{ij}, J_{ji}) = P(J_{ij})P(J_{ji})$

Consider (i) $J_{ij} = J_{ji}$; (ii) $J_{ij} = -J_{ji}$; (iii) $P(J_{ij}, J_{ji}) = P(J_{ij})P(J_{ji})$

(日) (월) (분) (분)

12

Consider (i) $J_{ij} = J_{ji}$; (ii) $J_{ij} = -J_{ji}$; (iii) $P(J_{ij}, J_{ji}) = P(J_{ij})P(J_{ji})$ 0.65 -100 -0-MC0.60OTA $\langle P \rangle = N^{-1} \sum_{i} P_{i}$ $\widehat{\mathbf{A}}_{0.50}^{0.55}$ $\theta = 0$ 0.45 -0.40 - $\langle J_{ij} \rangle = 0$ 2 3 5 0 1 4

(日) (四) (코) (코) (코) (코)

T
Symmetry breaking

Consider (i) $J_{ij} = J_{ji}$; (ii) $J_{ij} = -J_{ji}$; (iii) $P(J_{ij}, J_{ji}) = P(J_{ij})P(J_{ji})$ 0.65 -10 -0-MC0.60OTA $\langle P \rangle = N^{-1} \sum_{i} P_{i}$ $\widehat{\mathbf{A}}_{0.50}^{0.55}$ $\theta = 0$ 0.45 -0.40 - $\langle J_{ij} \rangle = 0$ 2 3 5 0 1 4

T

Symmetry breaking

 \Rightarrow bias towards activation or quiescence \Rightarrow Symmetry breaking

<ロト <四ト <注入 <注下 <注下 <

[G Torrisi, R Kühn, AA, JSTAT (2022)]

Outline

Motivation

- 2 Model inspired by neural networks
 - Model definition
 - Results

Introducing TFs: a bipartite graph model

- Model definition
- Percolation theory
- Dynamics
- One-time approximation
- Extensions: Multi-node and self-interactions

(日) (四) (문) (문) (문)

▲□▶ ▲□▶ ▲目≯ ▲目≯ 目 のへで

▲□▶ ▲□▶ ▲目≯ ▲目≯ 目 のへで

• Bi-directional links in *bipartite* graphs:

 $P(\xi_i^{\mu}\!\neq\!0|\eta_i^{\mu}\!=\!1)\!=\!{\color{black}p}$

• Bi-directional links in *bipartite* graphs:

$$P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) = \mathbf{p}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Bi-directional links in *bipartite* graphs:

$$P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) = \mathbf{p}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Bi-directional links in *bipartite* graphs: $P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) = p$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• <u>OR</u>: $n_i(t+1) = \Theta[\sum_j J_{ij}n_j(t) - \vartheta_i - z_i(t)], \quad J_{ii} \neq 0$

• Bi-directional links in *bipartite* graphs: $P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) = p$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• <u>OR</u>: $n_i(t+1) = \Theta[\sum_j J_{ij}n_j(t) - \vartheta_i - z_i(t)], \quad J_{ii} \neq 0$

• Bi-directional links in *bipartite* graphs: $P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) = p$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• <u>OR</u>: $n_i(t+1) = \Theta[\sum_j J_{ij}n_j(t) - \vartheta_i - z_i(t)], \quad J_{ii} \neq 0$ X

• Bi-directional links in *bipartite* graphs: $P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) = p$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• <u>OR</u>: $n_i(t+1) = \Theta[\sum_j J_{ij}n_j(t) - \vartheta_i - z_i(t)], \quad J_{ii} \neq 0$ X

• Bi-directional links in *bipartite* graphs: $P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) = p$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• <u>OR</u>: $n_i(t+1) = \Theta[\sum_j J_{ij}n_j(t) - \vartheta_i - z_i(t)], \quad J_{ii} \neq 0$ X

Map: N nodes and self-interactions $\Rightarrow 2N$ and bi-directional links

• Bi-directional links in *bipartite* graphs: $P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) = p$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• <u>OR</u>: $n_i(t+1) = \Theta[\sum_j J_{ij}n_j(t) - \vartheta_i - z_i(t)], \quad J_{ii} \neq 0$ X

Map: N nodes and self-interactions $\Rightarrow 2N$ and bi-directional links ... evolving according to linear threshold model V

• Bi-directional links in *bipartite* graphs: $P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) = p$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• <u>OR</u>: $n_i(t+1) = \Theta[\sum_j J_{ij}n_j(t) - \vartheta_i - z_i(t)], \quad J_{ii} \neq 0$ X

Map: N nodes and self-interactions $\Rightarrow 2N$ and bi-directional links ... evolving according to linear threshold model V

• AND:
$$\tau_{\mu}(t) = \prod_{j:\eta_j^{\mu}=1} n_j(t) \Rightarrow \tau_{\mu}(t) = \Theta[\sum_j \eta_j^{\mu} n_j(t) - c_{\mu} + \epsilon]$$

• Bi-directional links in *bipartite* graphs: $P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) = p$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• <u>OR</u>: $n_i(t+1) = \Theta[\sum_j J_{ij}n_j(t) - \vartheta_i - z_i(t)], \quad J_{ii} \neq 0$ X

Map: N nodes and self-interactions $\Rightarrow 2N$ and bi-directional links ... evolving according to linear threshold model V

• AND:
$$\tau_{\mu}(t) = \prod_{j:\eta_j^{\mu}=1} n_j(t) \Rightarrow \tau_{\mu}(t) = \Theta[\sum_j \eta_j^{\mu} n_j(t) - c_{\mu} + \epsilon]$$

• Bi-directional links in *bipartite* graphs: $P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) = p$

- <u>OR</u>: $n_i(t+1) = \Theta[\sum_j J_{ij}n_j(t) \vartheta_i z_i(t)], \quad J_{ii} \neq 0$ X
 - Map: N nodes and self-interactions $\Rightarrow 2N$ and bi-directional links ... evolving according to linear threshold model V
- <u>AND</u>: $\tau_{\mu}(t) = \prod_{j:\eta_{j}^{\mu}=1} n_{j}(t) \Rightarrow \tau_{\mu}(t) = \Theta[\sum_{j} \eta_{j}^{\mu} n_{j}(t) c_{\mu} + \epsilon]$ N + P nodes, bi-directional links, linear threshold model **V**

• $p = P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) \Rightarrow$ at low T multiplicity of attractors

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- $p = P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) \Rightarrow$ at low T multiplicity of attractors
- Similarity of attractors: AND (left), OR (right)

- $p = P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) \Rightarrow$ at low T multiplicity of attractors
- Similarity of attractors: AND (left), OR (right)

- $p = P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) \Rightarrow$ at low T multiplicity of attractors
- Similarity of attractors: AND (left), OR (right)

Self-regulation crucial for multiplicity of attractors

- $p = P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) \Rightarrow$ at low T multiplicity of attractors
- Similarity of attractors: AND (left), OR (right)

Self-regulation crucial for multiplicity of attractors

Cooperativity promotes diversity

- $p = P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) \Rightarrow$ at low T multiplicity of attractors
- Similarity of attractors: AND (left), OR (right)

Self-regulation crucial for multiplicity of attractors

Cooperativity promotes diversity

Both common features of GRNs \Rightarrow Sustain multi-cellular life?

- $p = P(\xi_i^{\mu} \neq 0 | \eta_i^{\mu} = 1) \Rightarrow$ at low T multiplicity of attractors
- Similarity of attractors: AND (left), OR (right)

Self-regulation crucial for multiplicity of attractors

Cooperativity promotes diversity

Both common features of GRNs \Rightarrow Sustain multi-cellular life?

[Hurry, Mozeika, AA, JPA (2022)]

• Constructed a minimal model with hierarchically organized cell cycles inspired by **Neural Networks**

• Constructed a minimal model with hierarchically organized cell cycles inspired by **Neural Networks**

(日) (四) (문) (문) (문)

• Investigated reprogramming:

• Constructed a minimal model with hierarchically organized cell cycles inspired by **Neural Networks**

- Investigated reprogramming:
 - Takes several cycles

• Constructed a minimal model with hierarchically organized cell cycles inspired by **Neural Networks**

(日) (四) (코) (코) (코) (코)

- Investigated reprogramming:
 - Takes several cycles
 - Can be achieved with realistic numbers of TFs

• Constructed a minimal model with hierarchically organized cell cycles inspired by **Neural Networks**

- Investigated reprogramming:
 - Takes several cycles
 - Can be achieved with realistic numbers of TFs
- Bipartite models

- Constructed a minimal model with hierarchically organized cell cycles inspired by **Neural Networks**
- Investigated reprogramming:
 - Takes several cycles
 - Can be achieved with realistic numbers of TFs
- Bipartite models
 - Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes

- Constructed a minimal model with hierarchically organized cell cycles inspired by **Neural Networks**
- Investigated reprogramming:
 - Takes several cycles
 - Can be achieved with realistic numbers of TFs
- Bipartite models
 - Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes

• Dynamics: efficient algorithm based on dynamic programming to calculate gene expression profile

- Constructed a minimal model with hierarchically organized cell cycles inspired by **Neural Networks**
- Investigated reprogramming:
 - Takes several cycles
 - Can be achieved with realistic numbers of TFs
- Bipartite models
 - Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes
 - Dynamics: efficient algorithm based on dynamic programming to calculate gene expression profile
 - for fully asymmetric networks, distribution of node activation has rich structure; Salient features rationalised in terms of discrete stochastic maps

- Constructed a minimal model with hierarchically organized cell cycles inspired by **Neural Networks**
- Investigated reprogramming:
 - Takes several cycles
 - Can be achieved with realistic numbers of TFs
- Bipartite models
 - Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes
 - Dynamics: efficient algorithm based on dynamic programming to calculate gene expression profile
 - for fully asymmetric networks, distribution of node activation has rich structure; Salient features rationalised in terms of discrete stochastic maps

• extensions to bi-directional links via OTA

- Constructed a minimal model with hierarchically organized cell cycles inspired by **Neural Networks**
- Investigated reprogramming:
 - Takes several cycles
 - Can be achieved with realistic numbers of TFs
- Bipartite models
 - Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes
 - Dynamics: efficient algorithm based on dynamic programming to calculate gene expression profile
 - for fully asymmetric networks, distribution of node activation has rich structure; Salient features rationalised in terms of discrete stochastic maps

- extensions to bi-directional links via OTA
- Unbiased interactions can sustain activation or quiescence

- Constructed a minimal model with hierarchically organized cell cycles inspired by **Neural Networks**
- Investigated reprogramming:
 - Takes several cycles
 - Can be achieved with realistic numbers of TFs
- Bipartite models
 - Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes
 - Dynamics: efficient algorithm based on dynamic programming to calculate gene expression profile
 - for fully asymmetric networks, distribution of node activation has rich structure; Salient features rationalised in terms of discrete stochastic maps

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- extensions to bi-directional links via OTA
- Unbiased interactions can sustain activation or quiescence
- Extensions to multi-node & self-interactions

- Constructed a minimal model with hierarchically organized cell cycles inspired by **Neural Networks**
- Investigated reprogramming:
 - Takes several cycles
 - Can be achieved with realistic numbers of TFs
- Bipartite models
 - Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes
 - Dynamics: efficient algorithm based on dynamic programming to calculate gene expression profile
 - for fully asymmetric networks, distribution of node activation has rich structure; Salient features rationalised in terms of discrete stochastic maps

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- extensions to bi-directional links via OTA
- Unbiased interactions can sustain activation or quiescence
- Extensions to multi-node & self-interactions
- Multiplicity of attractors at low ${\boldsymbol{T}}$
Discussion

- Constructed a minimal model with hierarchically organized cell cycles inspired by **Neural Networks**
- Investigated reprogramming:
 - Takes several cycles
 - Can be achieved with realistic numbers of TFs
- Bipartite models
 - Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes
 - Dynamics: efficient algorithm based on dynamic programming to calculate gene expression profile
 - for fully asymmetric networks, distribution of node activation has rich structure; Salient features rationalised in terms of discrete stochastic maps
 - extensions to bi-directional links via OTA
 - Unbiased interactions can sustain activation or quiescence
 - Extensions to multi-node & self-interactions
 - Multiplicity of attractors at low ${\boldsymbol{T}}$
 - Multi-node interactions favour diversity of attractors

Discussion

- Constructed a minimal model with hierarchically organized cell cycles inspired by **Neural Networks**
- Investigated reprogramming:
 - Takes several cycles
 - Can be achieved with realistic numbers of TFs
- Bipartite models
 - Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes
 - Dynamics: efficient algorithm based on dynamic programming to calculate gene expression profile
 - for fully asymmetric networks, distribution of node activation has rich structure; Salient features rationalised in terms of discrete stochastic maps
 - extensions to bi-directional links via OTA
 - Unbiased interactions can sustain activation or quiescence
 - Extensions to multi-node & self-interactions
 - Multiplicity of attractors at low T
 - Multi-node interactions favour diversity of attractors
 - Still many unanswered questions... the fight Maths vs GRNs continues!

- 2

(▲□) (個) (E) (E) (E) (0)(0)

PhD Students

Ryan Hannam Giuseppe Torrisi Christian Hurry

PhD Students

Ryan Hannam Giuseppe Torrisi Christian Hurry

Collaborators

Elena Agliari (Sapienza, Rome) Adriano Barra (Unisalento, Lecce) Anthony Coolen (Radboud, Nijmegen) **Reimer Kühn** (KCL, London) Alexander Mozeika (KCL, London) Peter Sollich (ITP, Göttingen) Daniele Tantari (Università di Bologna)

▲□▶ ▲舂▶ ▲理▶ ▲理▶ ― 理 ―

PhD Students

Ryan Hannam Giuseppe Torrisi Christian Hurry

Collaborators

Elena Agliari (Sapienza, Rome) Adriano Barra (Unisalento, Lecce) Anthony Coolen (Radboud, Nijmegen) **Reimer Kühn** (KCL, London) Alexander Mozeika (KCL, London) Peter Sollich (ITP, Göttingen) Daniele Tantari (Università di Bologna)

▲□▶ ▲舂▶ ▲理▶ ▲理▶ ― 理 ―

PhD Students

Ryan Hannam Giuseppe Torrisi Christian Hurry

Collaborators

Elena Agliari (Sapienza, Rome) Adriano Barra (Unisalento, Lecce) Anthony Coolen (Radboud, Nijmegen) **Reimer Kühn** (KCL, London) Alexander Mozeika (KCL, London) Peter Sollich (ITP, Göttingen) Daniele Tantari (Università di Bologna)

(日) (四) (문) (문) (문)

Many thanks Reimer!

PhD Students

Ryan Hannam Giuseppe Torrisi Christian Hurry

Collaborators

Elena Agliari (Sapienza, Rome) Adriano Barra (Unisalento, Lecce) Anthony Coolen (Radboud, Nijmegen) **Reimer Kühn** (KCL, London) Alexander Mozeika (KCL, London) Peter Sollich (ITP, Göttingen) Daniele Tantari (Università di Bologna)

Many thanks Reimer!

PhD Students

Ryan Hannam Giuseppe Torrisi Christian Hurry

Collaborators

Elena Agliari (Sapienza, Rome) Adriano Barra (Unisalento, Lecce) Anthony Coolen (Radboud, Nijmegen) **Reimer Kühn** (KCL, London) Alexander Mozeika (KCL, London) Peter Sollich (ITP, Göttingen) Daniele Tantari (Università di Bologna)

Many thanks Reimer!

PhD Students

Ryan Hannam Giuseppe Torrisi Christian Hurry

Collaborators

Elena Agliari (Sapienza, Rome) Adriano Barra (Unisalento, Lecce) Anthony Coolen (Radboud, Nijmegen) **Reimer Kühn** (KCL, London) Alexander Mozeika (KCL, London) Peter Sollich (ITP, Göttingen) Daniele Tantari (Università di Bologna)

Many thanks Reimer!

PhD Students

Ryan Hannam Giuseppe Torrisi Christian Hurry

Collaborators

Elena Agliari (Sapienza, Rome) Adriano Barra (Unisalento, Lecce) Anthony Coolen (Radboud, Nijmegen) **Reimer Kühn** (KCL, London) Alexander Mozeika (KCL, London) Peter Sollich (ITP, Göttingen) Daniele Tantari (Università di Bologna)

Many thanks Reimer!

PhD Students

Ryan Hannam Giuseppe Torrisi Christian Hurry

Collaborators

Elena Agliari (Sapienza, Rome) Adriano Barra (Unisalento, Lecce) Anthony Coolen (Radboud, Nijmegen) **Reimer Kühn** (KCL, London) Alexander Mozeika (KCL, London) Peter Sollich (ITP, Göttingen) Daniele Tantari (Università di Bologna)

Many thanks Reimer!

$$P_i(t+1) = \langle \Phi_T (h_i(\boldsymbol{n}_{\partial_i}) - \vartheta_i) \rangle_{\boldsymbol{n}_{\partial_i}, t} \qquad h_i(\boldsymbol{n}_{\partial_i}) = \sum_j J_{ij} n_j$$

• Let $\partial_i = \{1, \dots, k_i\}$ and def. average over subset of nodes

$$f_i(\ell, \tilde{h}) = \left\langle \Phi_T \left(\tilde{h} + \sum_{j=\ell}^{k_i} J_{ij} n_j - \vartheta_i \right) \right\rangle_{n_{\ell,\dots,k_i},t} \Rightarrow P_i(t+1) = f_i(1,0)$$

 $\tilde{h} = \text{auxiliary field}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$P_i(t+1) = \langle \Phi_T (h_i(\boldsymbol{n}_{\partial_i}) - \vartheta_i) \rangle_{\boldsymbol{n}_{\partial_i}, t} \qquad h_i(\boldsymbol{n}_{\partial_i}) = \sum_j J_{ij} n_j$$

• Let $\partial_i = \{1, \dots, k_i\}$ and def. average over subset of nodes

$$f_i(\ell, \tilde{h}) = \left\langle \Phi_T \left(\tilde{h} + \sum_{j=\ell}^{k_i} J_{ij} n_j - \vartheta_i \right) \right\rangle_{n_{\ell,\dots,k_i},t} \Rightarrow P_i(t+1) = f_i(1,0)$$

 $\tilde{h} = \text{auxiliary field}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$P_i(t+1) = \langle \Phi_T (h_i(\boldsymbol{n}_{\partial_i}) - \vartheta_i) \rangle_{\boldsymbol{n}_{\partial_i}, t} \qquad h_i(\boldsymbol{n}_{\partial_i}) = \sum_j J_{ij} n_j$$

• Let $\partial_i = \{1, \dots, k_i\}$ and def. average over **subset** of nodes

$$f_i(\ell, \tilde{h}) = \left\langle \Phi_T \left(\tilde{h} + \sum_{j=\ell}^{k_i} J_{ij} n_j - \vartheta_i \right) \right\rangle_{n_{\ell,\dots,k_i},t} \Rightarrow P_i(t+1) = f_i(1,0)$$

 $\tilde{h} = \text{auxiliary field}$

 $f_i(\ell, \tilde{h})$ obtained from backward recursion $f_i(\ell, \tilde{h}) = P_\ell(t) f_i(\ell + 1, \tilde{h} + J_{i\ell}) + (1 - P_\ell(t)) f_i(\ell + 1, \tilde{h})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$P_i(t+1) = \langle \Phi_T (h_i(\boldsymbol{n}_{\partial_i}) - \vartheta_i) \rangle_{\boldsymbol{n}_{\partial_i}, t} \qquad h_i(\boldsymbol{n}_{\partial_i}) = \sum_j J_{ij} n_j$$

• Let $\partial_i = \{1, \dots, k_i\}$ and def. average over **subset** of nodes

$$f_i(\ell, \tilde{h}) = \left\langle \Phi_T \left(\tilde{h} + \sum_{j=\ell}^{k_i} J_{ij} n_j - \vartheta_i \right) \right\rangle_{n_{\ell,\dots,k_i},t} \Rightarrow P_i(t+1) = f_i(1,0)$$

$$\tilde{h} = \text{auxiliary field}$$

 $f_i(\ell, \tilde{h})$ obtained from backward recursion $f_i(\ell, \tilde{h}) = P_\ell(t) f_i(\ell + 1, \tilde{h} + J_{i\ell}) + (1 - P_\ell(t)) f_i(\ell + 1, \tilde{h})$

with terminal boundary condition $f_i(k_i + 1, \tilde{h}) = \Phi_T \left(\tilde{h} - \vartheta_i \right)$

For $J_{ij} \in \{0, \pm J\}$:

at each ℓ , $f_i(\ell,\tilde{h})$ requires $f_i(\ell+1,\tilde{h})$ and $f_i(\ell+1,\tilde{h}\pm J)$

For $J_{ij} \in \{0, \pm J\}$:

at each ℓ , $f_i(\ell,\tilde{h})$ requires $f_i(\ell+1,\tilde{h})$ and $f_i(\ell+1,\tilde{h}\pm J)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 \Rightarrow evaluation of $f_i(\ell, \tilde{h})$ only required on discrete grid

For $J_{ij} \in \{0, \pm J\}$:

at each $\ell,~f_i(\ell,\tilde{h})$ requires $f_i(\ell+1,\tilde{h})$ and $f_i(\ell+1,\tilde{h}\pm J)$

<ロ> (四) (四) (三) (三) (三)

 \Rightarrow evaluation of $f_i(\ell, \tilde{h})$ only required on discrete grid

For $J_{ij} \in \{0, \pm J\}$:

at each $\ell,~f_i(\ell,\tilde{h})$ requires $f_i(\ell+1,\tilde{h})$ and $f_i(\ell+1,\tilde{h}\pm J)$

 \Rightarrow evaluation of $f_i(\ell, \tilde{h})$ only required on discrete grid

$$k_i = 3, \quad \partial_i = \{1, 2, 3\}$$

 $J_{i1} = +J; \ J_{i2} = -J; \ J_{i3} = +J$

<ロ> (四) (四) (三) (三) (三)

For $J_{ij} \in \{0, \pm J\}$:

at each $\ell,~f_i(\ell,\tilde{h})$ requires $f_i(\ell+1,\tilde{h})$ and $f_i(\ell+1,\tilde{h}\pm J)$

 \Rightarrow evaluation of $f_i(\ell, \tilde{h})$ only required on discrete grid

$$k_i = 3, \quad \partial_i = \{1, 2, 3\}$$

 $J_{i1} = +J; \ J_{i2} = -J; \ J_{i3} = +J$

<ロ> (四) (四) (三) (三) (三)

For $J_{ij} \in \{0, \pm J\}$:

at each $\ell \text{, } f_i(\ell,\tilde{h})$ requires $f_i(\ell+1,\tilde{h})$ and $f_i(\ell+1,\tilde{h}\pm J)$

 \Rightarrow evaluation of $f_i(\ell, \tilde{h})$ only required on discrete grid

$$k_i = 3, \quad \partial_i = \{1, 2, 3\}$$

 $J_{i1} = +J; \ J_{i2} = -J; \ J_{i3} = +J$

<ロ> (四) (四) (三) (三) (三)

Nr eval. =
$$\sum_{\ell=1}^{k_i+1} \ell = (k_i+1)(k_i+2)/2 \quad \forall i$$

For $J_{ij} \in \{0, \pm J\}$:

at each $\ell,~f_i(\ell,\tilde{h})$ requires $f_i(\ell+1,\tilde{h})$ and $f_i(\ell+1,\tilde{h}\pm J)$

 \Rightarrow evaluation of $f_i(\ell, \tilde{h})$ only required on discrete grid

$$k_i = 3, \quad \partial_i = \{1, 2, 3\}$$

 $J_{i1} = +J; \ J_{i2} = -J; \ J_{i3} = +J$

(日) (國) (필) (필) (필) 표

Nr eval. =
$$\sum_{\ell=1}^{k_i+1} \ell = (k_i+1)(k_i+2)/2 \quad \forall i$$

Complexity $\mathcal{O}(\sum_i 2^{k_i}) \Rightarrow \mathcal{O}(\sum_i k_i^2)$

For $J_{ij} \in \{0, \pm J\}$:

at each $\ell\text{, }f_i(\ell,\tilde{h})$ requires $f_i(\ell+1,\tilde{h})$ and $f_i(\ell+1,\tilde{h}\pm J)$

 \Rightarrow evaluation of $f_i(\ell, \tilde{h})$ only required on discrete grid

$$k_i = 3, \quad \partial_i = \{1, 2, 3\}$$

 $J_{i1} = +J; \ J_{i2} = -J; \ J_{i3} = +J$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □ □

Nr eval. =
$$\sum_{\ell=1}^{k_i+1} \ell = (k_i+1)(k_i+2)/2 \quad \forall i$$

Complexity $\mathcal{O}(\sum_i 2^{k_i}) \Rightarrow \mathcal{O}(\sum_i k_i^2)$

Similar reduction for $J_{ij} \in \{-r_i J_i, \ldots, -J_i, 0, J_i, \ldots, s_i J_i\}$