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Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, ’Yamanaka factors’, into somatic cells

Source: Cell Transfection — cell-transfection.com

Nobel prize 2012 for Physiology or
Medicine

O(10) days to reprogram

many cells take ’bad trajectories’
after reprogramming.. e.g. cancer

Q: How to control cell fate?

huge dim: ’on/off’ genes ⇒ 225,000

possible gene patterns

Striking that we only have ∼ 300
cell types..

Idea: cell types are attractors of
gene dynamics, like memories for
neural dynamics..
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Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes

⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ
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N pixels, i = 1, . . . , N

ξµi =

{
1 □
−1 ■

Jij = P−1
∑
µ

ξµi ξ
µ
j

σ(0)→ . . .→ξρ



Preliminary observation

If I knew everything about cell.. could write equations for all chemical
reactions in a cell (genes, mRNA, proteins, metabolites...).

Suppose I integrate out all degrees of freedom except genes

⇒
reduced system of interacting genes hi(t)=

∑
j Jijnj(t)

Jij=

{
> 0 promote
< 0 inhibit

ni ∈ {0, 1} : ni(t+ 1)=Θ
[
hi(t)− zi(t)

]
Prob[z ≤ x] = ΦT (x), T = noise level

Neural Networks σi = ±1: σi(t+1)=sgn
[∑

jJijσj(t)−zi(t)
]

Store multiple patterns {ξ1, . . . , ξP } [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich
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Nature of cellular attractors

cell types are hierarchically organized

dynamical entities i.e. they cycle (G1→S→G2→M→G1 . . . )

⇒ Choose Jij to encode hierarchically organized cycles

ρ=cell-cycle stage ∈ {1 . . . C}
µ = somatic cell type ∈ {1 . . .M}
ηρi , η

ρµ
i ∈{0, 1}: gene i in given cell type

& phase
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Inspiration from neural networks

Sequences of patterns: ξ1 → ξ2 → . . . ξP [Sompolinsky, Kanter (1986)]

Jij =
1

N

P∑
µ=1

ξµ+1
i ξµj Cycles : ξP+1 = ξ1

Patterns hierarchically organized ξρ → {ξρµ} → {{ξρµλ}}

[Parga, Virasoro (1986); Krogh, Herz (1988)]

Markov process [defn as martingale]:

W (ξµ1...µk+1 |ξµ1...µk)

Jij=
1

N

{
M∑
ρ=1

ξρi ξ
ρ
j

q1
+

M∑
ρµ=1

(ξρµi −ξρi )(ξ
ρµ
j −ξρj )

q2 − q1
+

M∑
ρµλ=1

(ξρµλi −ξρµi )(ξρµλj −ξρµj )

1− q2

}
⇒ Combine and adapt to 0,1 variables.. (for a more general W )
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Results

If we include in the system only regulatory genes:

Nr ≃ 0.1N ≃ 2, 500 ⇒ qrNr ≃ 250 - 500 genes

Also:

each Yamanaka TF involved in regulating O(100) genes

⇒ can perturb qrNr genes with O(3−5) TFs! (Yamanaka
territory!)

Q: Biological grounds for interactions?
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A bipartite graph approach

1 2 ν µ ρ P = αN

1 2 k i j N

ηµi ξµj

doutk

coutν
cinρ

dinj

ηµi ∈{0, 1}

ξµi ∈{0,±1}

ni(t+ 1)=Θ[
∑
µ

ξµi τµ(t)−ϑi−zi(t)], τµ(t)=concentration of TF µ at t

Different types of logic for TFs:

AND: TF µ ’ON’ if all contributing genes ’ON’

τµ(t) =
∏

j:ηµ
j =1

nj(t)

OR: TF µ ’ON’ if at least one contributing gene ’ON’

τµ(t) =
1

cinµ

∑
j

ηµj nj(t)
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Linear vs non-linear threshold dynamics

OR: linear threshold model

ni(t+1)=Θ[
∑
j

∑
µ

ξµi η
µ
j

cinµ︸ ︷︷ ︸
Jij

nj(t)−ϑi−zi(t)]

µ

j

ηµj

i

ξµi

⇒ j
Jij

i

Reminiscent of Neural networks with sparse patterns ξµi =0,±1

Jij =
∑
µ

ξµi ξ
µ
j

cµ
⇒ parallel retrieval of patterns

[Agliari, AA, Barra, Coolen, Tantari, JPA (2013)]

[Sollich, Tantari, AA, Barra, PRL (2014)]

BUT: here ξµi ∈{0,±1} and ηµi ∈{0, 1} ⇒ Jij ̸= Jji

AND: non-linear threshold model

ni(t+ 1) = Θ[
∑
µ

ξµi
∏

j:ηµ
i =1

nj(t)− ϑi − zi(t)]

asymmetric multi-node interactions (as opposed to pairwise)
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Percolation

Q: For which model’s parameters can have non-trivial attractors?

A: Noisy finite systems are ergodic ⇒ Giant Component (GC) for
multiplicity of attractors ⇒ Percolation theory

AND:

GC stable if ⟨cin⟩TF PG(d
in = 1) < 1

cin cout

⇒ TFs should be small complexes

GC only stable solution if α⟨cout⟩TF PTF(c
in = 1) > 1

⇒ TFs should regulate sufficiently many genes

OR:

GC only stable option for α⟨cin⟩TF⟨cout⟩TF > 1

TFs indeed small complexes which regulate many genes!

[Hannam,Kühn,AA, JPA (2019); Torrisi, Kühn,AA, JSTAT (2020)]
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[Hannam,Kühn,AA, JPA (2019); Torrisi, Kühn,AA, JSTAT (2020)]
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Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i)− ϑi)⟩n∂i
, t ⟨. . .⟩n∂i

, t =
∑
n∂i

. . . P (n∂i , t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]

P (n∂i
, t) = P (i)(n∂i

, t) =
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj
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P (n∂i
, t) = P (i)(n∂i

, t) =
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj



Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i)− ϑi)⟩n∂i
, t ⟨. . .⟩n∂i

, t =
∑
n∂i

. . . P (n∂i , t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]
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P (n∂i
, t) = P (i)(n∂i

, t)

=
∏
j∈∂i

Pj(nj , t)

Pi(t+1)=
∑
n∂i

ΦT (hi(n∂i)−ϑi)
∏
j∈∂i

Pj(t)
nj [1−Pj(t)]

1−nj



Dynamics

Linear threshold model

ni(t+ 1)=Θ
[
hi

(
n∂i

(t)
)
− ϑi − zi(t)

]
hi

(
n∂i

(t)
)
=
∑
j

Jij nj(t)

zi(t) random with Prob[z ≤ x] = ΦT (x)

Interested in activation probability Pi(t) = Prob(ni(t) = 1)

Pi(t+ 1) = ⟨ΦT (hi(n∂i
)− ϑi)⟩n∂i

, t ⟨. . .⟩n∂i
, t =

∑
n∂i

. . . P (n∂i
, t)

Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

P (i)(n∂i) =
∏
j∈∂i

P
(i)
j (nj)

Fully-asymmetric JijJji=0 [Neri & Bollé, JSTAT (2009)]
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Dynamic programming

Solve iteratively: t= 0, 1, . . . BUT exponential complexity: 2|∂i|

For binary Jij = ±J : O(
∑

i 2
|∂i|) ⇒ O(

∑
i |∂i|2)

via Dynamic programming

[Torrisi, AA, Kühn, PRE (2021)] https://github.com/g-torr/

Power-law: p(k) ∼ γk−γ−1, γ=2.81; N=2·105, kmax = 800
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Results P (Jij ̸=0) = ηδ(Jij − J) + (1−η)δ(Jij + J), η = 0.62

Multimodal distribution ⇒ node heterogeneities

Let ki = 1, ∂i = {j}, Pj = P :

Pi = PΦT (±J − ϑ) + (1− P )ΦT (−ϑ) ≡ ρ±(P )

e.g. in FM chains Pi+1=ρ+(Pi) ⇒ p∗ = ρ+(p
∗)

Note: in fully asymmetric nets only one attractor [Torrisi,AA,Kühn, PRE (2021)]
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One-time approximation

With bi-directional links P (i)(n∂i , t) ̸=
∏

j∈∂i P
(i)(nj , t) BUT

P (i)(n0...T
∂i |n0...T

i )=
∏
j∈∂i

P
(i)
j (n0...T

j |n0...T
i )

Have to work with trajectories

Pi(n
0,...,t
i ) =

∑
n0...T

∂i

(. . .)
∏
j∈∂i

P
(i)
j (n0...T

j |n0...T
i )

Additional complexity in time.. One-time step approximation [Neri Bollé 2009]

P (i)(n0...T
j |n0...T

i ) ≃ P
(i)
j (n0

j )

t∏
s=1

P
(i)
j (ns

j |ns−1
i )

⇒ recursion for cavity marginals P
(ℓ)
i (nt

i|nt−1
ℓ ) in terms of P

(i)
j (nt−1

j |nt−2
i )

Similar equation for Pi(n
t
i) .. Both benefit from dynamic programming!
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Discussion

Constructed a minimal model with hierarchically organized cell cycles
inspired by Neural Networks

Investigated reprogramming:

Takes several cycles
Can be achieved with realistic numbers of TFs

Bipartite models

Percolation: for a cell to exist, TFs typically small protein complexes
that regulate many genes
Dynamics: efficient algorithm based on dynamic programming to
calculate gene expression profile
for fully asymmetric networks, distribution of node activation has rich
structure; Salient features rationalised in terms of discrete stochastic
maps
extensions to bi-directional links via OTA
Unbiased interactions can sustain activation or quiescence
Extensions to multi-node & self-interactions
Multiplicity of attractors at low T
Multi-node interactions favour diversity of attractors
Still many unanswered questions... the fight Maths vs GRNs continues!
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Many thanks Reimer!

Many thanks for listening!



Acknowledgement

PhD Students
Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators
Elena Agliari (Sapienza, Rome)
Adriano Barra (Unisalento, Lecce)
Anthony Coolen (Radboud, Nijmegen)
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Dynamic programming

Pi(t+ 1) = ⟨ΦT (hi(n∂i)− ϑi)⟩n∂i
, t hi(n∂i) =

∑
j

Jijnj

Let ∂i = {1, . . . , ki} and def. average over subset of nodes

fi(ℓ, h̃) =

〈
ΦT

(
h̃+

ki∑
j=ℓ

Jijnj − ϑi

)〉
nℓ,...,ki

,t

⇒ Pi(t+ 1) = fi(1, 0)

h̃ = auxiliary field

fi(ℓ, h̃) obtained from backward recursion

fi(ℓ, h̃) = Pℓ(t) fi(ℓ+ 1, h̃+ Jiℓ) +
(
1− Pℓ(t)

)
fi(ℓ+ 1, h̃)

with terminal boundary condition fi(ki + 1, h̃) = ΦT

(
h̃− ϑi

)
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Dynamic programming [Torrisi, AA, Kühn, PRE (2021)]

For Jij ∈ {0,±J}:
at each ℓ, fi(ℓ, h̃) requires fi(ℓ+ 1, h̃) and fi(ℓ+ 1, h̃± J)

⇒ evaluation of fi(ℓ, h̃) only required on discrete grid

ki = 3, ∂i = {1, 2, 3}
Ji1 = +J ; Ji2 = −J ; Ji3 = +J

Nr eval. =

ki+1∑
ℓ=1

ℓ = (ki + 1)(ki + 2)/2 ∀ i

Complexity O(
∑

i 2
ki) ⇒ O(

∑
i k

2
i )

Similar reduction for Jij ∈ {−riJi, . . . ,−Ji, 0, Ji, . . . , siJi}
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