Mathematicians against gene-regulatory networks

Alessia Annibale

Mathematics, King's College London

DISORDERED SYSTEMS DAYS AT KING'S COLLEGE LONDON

A workshop on disorder to celebrate Reimer Kühn

$$
\text { 11-12 September } 2023
$$

Outline

(1) Motivation
(2) Model inspired by neural networks

- Model definition
- Results
(3) Introducing TFs: a bipartite graph model
- Model definition
- Percolation theory
- Dynamics
- One-time approximation
- Extensions: Multi-node and self-interactions

Outline

(1) Motivation
(2) Model inspired by neural networks

- Model definition
- Results
(3) Introducing TFs: a bipartite graph model
- Model definition
- Percolation theory
- Dynamics
- One-time approximation
- Extensions: Multi-node and self-interactions

Cell differentiation

Cell differentiation

[^0]
Cell differentiation

[^1]
Cell differentiation

- Each cell contains the same genes, $N \sim 25000$

Cell differentiation

- Each cell contains the same genes, $N \sim 25000$
- Different cells express different genes

Cell differentiation

- Each cell contains the same genes, $N \sim 25000$
- Different cells express different genes
- Transcription factors (TFs)
regulate expression

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

Source: Cell Transfection - cell-transfection.com

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

Source: Cell Transfection - cell-transfection.com

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

Source: Cell Transfection - cell-transfection.com

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

Totipotent embryonic stem cell

- Nobel prize 2012 for Physiology or Medicine

Source: Cell Transfection - cell-transfection.com

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

Totipotent embryonic stem cell

- Nobel prize 2012 for Physiology or Medicine
- $\mathcal{O}(10)$ days to reprogram

Source: Cell Transfection - cell-transfection.com

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

Totipotent embryonic stem cell

- Nobel prize 2012 for Physiology or Medicine
- $\mathcal{O}(10)$ days to reprogram
- many cells take 'bad trajectories' after reprogramming.. e.g. cancer

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

Totipotent embryonic stem cell

- Nobel prize 2012 for Physiology or Medicine
- $\mathcal{O}(10)$ days to reprogram
- many cells take 'bad trajectories' after reprogramming.. e.g. cancer
- Q: How to control cell fate?

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

Totipotent embryonic stem cell

- Nobel prize 2012 for Physiology or Medicine
- $\mathcal{O}(10)$ days to reprogram
- many cells take 'bad trajectories' after reprogramming.. e.g. cancer
- Q: How to control cell fate?
- huge dim: 'on/off' genes $\Rightarrow 2^{25,000}$ possible gene patterns

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

Totipotent embryonic stem cell

- Nobel prize 2012 for Physiology or Medicine
- $\mathcal{O}(10)$ days to reprogram
- many cells take 'bad trajectories' after reprogramming.. e.g. cancer
- Q: How to control cell fate?
- huge dim: 'on/off' genes $\Rightarrow 2^{25,000}$ possible gene patterns
- Striking that we only have ~ 300 cell types..

Cell reprogramming: Takahashi and Yamanaka (2006)

Introduce 4 TFs, 'Yamanaka factors', into somatic cells

Totipotent embryonic stem cell

- Nobel prize 2012 for Physiology or Medicine
- $\mathcal{O}(10)$ days to reprogram
- many cells take 'bad trajectories' after reprogramming.. e.g. cancer
- Q: How to control cell fate?
- huge dim: 'on/off' genes $\Rightarrow 2^{25,000}$ possible gene patterns
- Striking that we only have ~ 300 cell types..
- Idea: cell types are attractors of gene dynamics, like memories for neural dynamics..

Outline

（1）Motivation
（2）Model inspired by neural networks
－Model definition
－Results
（3）Introducing TFs：a bipartite graph model
－Model definition
－Percolation theory
－Dynamics
－One－time approximation
－Extensions：Multi－node and self－interactions

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom except genes

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom except genes

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom except genes \Rightarrow reduced system of interacting genes

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom except genes \Rightarrow reduced system of interacting genes $h_{i}(t)=\sum_{j} J_{i j} n_{j}(t)$

Preliminary observation

－If I knew everything about cell．．could write equations for all chemical reactions in a cell（genes，mRNA，proteins，metabolites．．．）．
－Suppose I integrate out all degrees of freedom except genes \Rightarrow reduced system of interacting genes $h_{i}(t)=\sum_{j} J_{i j} n_{j}(t)$

$$
J_{i j}= \begin{cases}>0 & \text { promote } \\ <0 & \text { inhibit }\end{cases}
$$

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom except genes \Rightarrow reduced system of interacting genes $h_{i}(t)=\sum_{j} J_{i j} n_{j}(t)$

$$
J_{i j}=\left\{\begin{array}{ll}
>0 & \text { promote } \\
<0 & \text { inhibit }
\end{array} \quad n_{i} \in\{0,1\}: \quad n_{i}(t+1)=\Theta\left[h_{i}(t)-z_{i}(t)\right]\right.
$$

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom except genes \Rightarrow reduced system of interacting genes $h_{i}(t)=\sum_{j} J_{i j} n_{j}(t)$

$$
J_{i j}=\left\{\begin{array}{ll}
>0 & \text { promote } \\
<0 & \text { inhibit }
\end{array} \quad n_{i} \in\{0,1\}: \quad n_{i}(t+1)=\Theta\left[h_{i}(t)-z_{i}(t)\right]\right.
$$

$$
\operatorname{Prob}[z \leq x]=\Phi_{T}(x), \quad T=\text { noise level }
$$

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom except genes \Rightarrow reduced system of interacting genes $h_{i}(t)=\sum_{j} J_{i j} n_{j}(t)$

$$
\begin{array}{r}
J_{i j}=\left\{\begin{array}{ll}
>0 & \text { promote } \\
<0 & \text { inhibit }
\end{array} n_{i} \in\{0,1\}: \quad n_{i}(t+1)=\Theta\left[h_{i}(t)-z_{i}(t)\right]\right. \\
\operatorname{Prob}[z \leq x]=\Phi_{T}(x), \quad T=\text { noise level }
\end{array}
$$

- Neural Networks $\sigma_{i}= \pm 1: \sigma_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} J_{i j} \sigma_{j}(t)-z_{i}(t)\right]$

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom except genes \Rightarrow reduced system of interacting genes $h_{i}(t)=\sum_{j} J_{i j} n_{j}(t)$

$$
\begin{array}{r}
J_{i j}=\left\{\begin{array}{ll}
>0 & \text { promote } \\
<0 & \text { inhibit }
\end{array} n_{i} \in\{0,1\}: \quad n_{i}(t+1)=\Theta\left[h_{i}(t)-z_{i}(t)\right]\right. \\
\operatorname{Prob}[z \leq x]=\Phi_{T}(x), \quad T=\text { noise level }
\end{array}
$$

- Neural Networks $\sigma_{i}= \pm 1: \sigma_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} J_{i j} \sigma_{j}(t)-z_{i}(t)\right]$

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom except genes \Rightarrow reduced system of interacting genes $h_{i}(t)=\sum_{j} J_{i j} n_{j}(t)$

$$
\begin{array}{r}
J_{i j}=\left\{\begin{array}{ll}
>0 & \text { promote } \\
<0 & \text { inhibit }
\end{array} n_{i} \in\{0,1\}: \quad n_{i}(t+1)=\Theta\left[h_{i}(t)-z_{i}(t)\right]\right. \\
\operatorname{Prob}[z \leq x]=\Phi_{T}(x), \quad T=\text { noise level }
\end{array}
$$

- Neural Networks $\sigma_{i}= \pm 1: \sigma_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} J_{i j} \sigma_{j}(t)-z_{i}(t)\right]$ Store multiple patterns $\left\{\boldsymbol{\xi}^{1}, \ldots, \boldsymbol{\xi}^{P}\right\} \quad$ [Hopfield (1982)]

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom except genes \Rightarrow reduced system of interacting genes $h_{i}(t)=\sum_{j} J_{i j} n_{j}(t)$

$$
\begin{array}{r}
J_{i j}=\left\{\begin{array}{lll}
>0 & \text { promote } \\
<0 & \text { inhibit }
\end{array} \quad n_{i} \in\{0,1\}: \quad n_{i}(t+1)=\Theta\left[h_{i}(t)-z_{i}(t)\right]\right. \\
\\
\operatorname{Prob}[z \leq x]=\Phi_{T}(x), \quad T=\text { noise level }
\end{array}
$$

- Neural Networks $\sigma_{i}= \pm 1: \sigma_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} J_{i j} \sigma_{j}(t)-z_{i}(t)\right]$ Store multiple patterns $\left\{\boldsymbol{\xi}^{1}, \ldots, \boldsymbol{\xi}^{P}\right\} \quad$ [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom except genes \Rightarrow reduced system of interacting genes $h_{i}(t)=\sum_{j} J_{i j} n_{j}(t)$

$$
\begin{array}{r}
J_{i j}=\left\{\begin{array}{lll}
>0 & \text { promote } \\
<0 & \text { inhibit }
\end{array} \quad n_{i} \in\{0,1\}: \quad n_{i}(t+1)=\Theta\left[h_{i}(t)-z_{i}(t)\right]\right. \\
\\
\operatorname{Prob}[z \leq x]=\Phi_{T}(x), \quad T=\text { noise level }
\end{array}
$$

- Neural Networks $\sigma_{i}= \pm 1: \sigma_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} J_{i j} \sigma_{j}(t)-z_{i}(t)\right]$ Store multiple patterns $\left\{\boldsymbol{\xi}^{1}, \ldots, \boldsymbol{\xi}^{P}\right\} \quad$ [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom except genes \Rightarrow reduced system of interacting genes $h_{i}(t)=\sum_{j} J_{i j} n_{j}(t)$

$$
\begin{array}{r}
J_{i j}=\left\{\begin{array}{lll}
>0 & \text { promote } \\
<0 & \text { inhibit }
\end{array} \quad n_{i} \in\{0,1\}: \quad n_{i}(t+1)=\Theta\left[h_{i}(t)-z_{i}(t)\right]\right. \\
\\
\operatorname{Prob}[z \leq x]=\Phi_{T}(x), \quad T=\text { noise level }
\end{array}
$$

- Neural Networks $\sigma_{i}= \pm 1: \sigma_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} J_{i j} \sigma_{j}(t)-z_{i}(t)\right]$ Store multiple patterns $\left\{\boldsymbol{\xi}^{1}, \ldots, \boldsymbol{\xi}^{P}\right\} \quad$ [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom except genes \Rightarrow reduced system of interacting genes $h_{i}(t)=\sum_{j} J_{i j} n_{j}(t)$

$$
\begin{array}{r}
J_{i j}=\left\{\begin{array}{lll}
>0 & \text { promote } \\
<0 & \text { inhibit }
\end{array} \quad n_{i} \in\{0,1\}: \quad n_{i}(t+1)=\Theta\left[h_{i}(t)-z_{i}(t)\right]\right. \\
\\
\operatorname{Prob}[z \leq x]=\Phi_{T}(x), \quad T=\text { noise level }
\end{array}
$$

- Neural Networks $\sigma_{i}= \pm 1: \sigma_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} J_{i j} \sigma_{j}(t)-z_{i}(t)\right]$ Store multiple patterns $\left\{\boldsymbol{\xi}^{1}, \ldots, \boldsymbol{\xi}^{P}\right\} \quad$ [Hopfield (1982)]

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom except genes \Rightarrow reduced system of interacting genes $h_{i}(t)=\sum_{j} J_{i j} n_{j}(t)$

$$
\begin{array}{r}
J_{i j}=\left\{\begin{array}{lll}
>0 & \text { promote } \\
<0 & \text { inhibit }
\end{array} \quad n_{i} \in\{0,1\}: \quad n_{i}(t+1)=\Theta\left[h_{i}(t)-z_{i}(t)\right]\right. \\
\\
\operatorname{Prob}[z \leq x]=\Phi_{T}(x), \quad T=\text { noise level }
\end{array}
$$

- Neural Networks $\sigma_{i}= \pm 1: \sigma_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} J_{i j} \sigma_{j}(t)-z_{i}(t)\right]$ Store multiple patterns $\left\{\boldsymbol{\xi}^{1}, \ldots, \boldsymbol{\xi}^{P}\right\}$ [Hopfield (1982)]

$$
\begin{array}{r}
N \text { pixels, } i=1, \ldots, N \\
\xi_{i}^{\mu}=\left\{\begin{array}{cc}
1 & \square \\
-1 & \square
\end{array}\right.
\end{array}
$$

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

$$
J_{i j}=P^{-1} \sum_{\mu} \xi_{i}^{\mu} \xi_{j}^{\mu}
$$

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom except genes \Rightarrow reduced system of interacting genes $h_{i}(t)=\sum_{j} J_{i j} n_{j}(t)$

$$
\begin{array}{r}
J_{i j}=\left\{\begin{array}{lll}
>0 & \text { promote } \\
<0 & \text { inhibit }
\end{array} \quad n_{i} \in\{0,1\}: \quad n_{i}(t+1)=\Theta\left[h_{i}(t)-z_{i}(t)\right]\right. \\
\\
\operatorname{Prob}[z \leq x]=\Phi_{T}(x), \quad T=\text { noise level }
\end{array}
$$

- Neural Networks $\sigma_{i}= \pm 1: \sigma_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} J_{i j} \sigma_{j}(t)-z_{i}(t)\right]$ Store multiple patterns $\left\{\boldsymbol{\xi}^{1}, \ldots, \boldsymbol{\xi}^{P}\right\} \quad$ [Hopfield (1982)]

$$
\begin{array}{r}
N \text { pixels, } i=1, \ldots, N \\
\xi_{i}^{\mu}=\left\{\begin{array}{cc}
1 & \square \\
-1 & \square
\end{array}\right.
\end{array}
$$

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

$$
J_{i j}=P^{-1} \sum_{\mu} \xi_{i}^{\mu} \xi_{j}^{\mu} \quad \boldsymbol{\sigma}(0) \rightarrow \ldots \rightarrow \boldsymbol{\xi}^{\rho}
$$

Preliminary observation

- If I knew everything about cell.. could write equations for all chemical reactions in a cell (genes, mRNA, proteins, metabolites...).
- Suppose I integrate out all degrees of freedom except genes \Rightarrow reduced system of interacting genes $h_{i}(t)=\sum_{j} J_{i j} n_{j}(t)$

$$
\begin{array}{r}
J_{i j}=\left\{\begin{array}{lll}
>0 & \text { promote } \\
<0 & \text { inhibit }
\end{array} \quad n_{i} \in\{0,1\}: \quad n_{i}(t+1)=\Theta\left[h_{i}(t)-z_{i}(t)\right]\right. \\
\\
\operatorname{Prob}[z \leq x]=\Phi_{T}(x), \quad T=\text { noise level }
\end{array}
$$

- Neural Networks $\sigma_{i}= \pm 1: \sigma_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} J_{i j} \sigma_{j}(t)-z_{i}(t)\right]$ Store multiple patterns $\left\{\boldsymbol{\xi}^{1}, \ldots, \boldsymbol{\xi}^{P}\right\} \quad$ [Hopfield (1982)]

N pixels, $i=1, \ldots, N$

$$
\xi_{i}^{\mu}=\left\{\begin{array}{cc}
1 & \square \\
-1 & \square
\end{array}\right.
$$

Theory of Neuronal Information Procesing, Coolen, Kühn, Sollich

$$
J_{i j}=P^{-1} \sum_{\mu} \xi_{i}^{\mu} \xi_{j}^{\mu} \quad \boldsymbol{\sigma}(0) \rightarrow \ldots \rightarrow \boldsymbol{\xi}^{\rho}
$$

Nature of cellular attractors

- cell types are hierarchically organized

Nature of cellular attractors

- cell types are hierarchically organized

- dynamical entities i.e. they cycle $\left(G_{1} \rightarrow S \rightarrow G_{2} \rightarrow M \rightarrow G_{1} \ldots\right)$

Nature of cellular attractors

- cell types are hierarchically organized

- dynamical entities i.e. they cycle ($G_{1} \rightarrow S \rightarrow G_{2} \rightarrow M \rightarrow G_{1} \ldots$)
\Rightarrow Choose $J_{i j}$ to encode hierarchically organized cycles

Nature of cellular attractors

- cell types are hierarchically organized

- dynamical entities i.e. they cycle ($G_{1} \rightarrow S \rightarrow G_{2} \rightarrow M \rightarrow G_{1} \ldots$)
\Rightarrow Choose $J_{i j}$ to encode hierarchically organized cycles

Nature of cellular attractors

- cell types are hierarchically organized

- dynamical entities i.e. they cycle ($G_{1} \rightarrow S \rightarrow G_{2} \rightarrow M \rightarrow G_{1} \ldots$)
\Rightarrow Choose $J_{i j}$ to encode hierarchically organized cycles

Nature of cellular attractors

- cell types are hierarchically organized

- dynamical entities i.e. they cycle $\left(G_{1} \rightarrow S \rightarrow G_{2} \rightarrow M \rightarrow G_{1} \ldots\right)$
\Rightarrow Choose $J_{i j}$ to encode hierarchically organized cycles

- $\rho=$ cell-cycle stage $\in\{1 \ldots C\}$

Nature of cellular attractors

- cell types are hierarchically organized

- dynamical entities i.e. they cycle $\left(G_{1} \rightarrow S \rightarrow G_{2} \rightarrow M \rightarrow G_{1} \ldots\right)$
\Rightarrow Choose $J_{i j}$ to encode hierarchically organized cycles

- $\rho=$ cell-cycle stage $\in\{1 \ldots C\}$
- $\mu=$ somatic cell type $\in\{1 \ldots M\}$

Nature of cellular attractors

- cell types are hierarchically organized

- dynamical entities i.e. they cycle $\left(G_{1} \rightarrow S \rightarrow G_{2} \rightarrow M \rightarrow G_{1} \ldots\right)$
\Rightarrow Choose $J_{i j}$ to encode hierarchically organized cycles

- $\rho=$ cell-cycle stage $\in\{1 \ldots C\}$
- $\mu=$ somatic cell type $\in\{1 \ldots M\}$
- $\eta_{i}^{\rho}, \eta_{i}^{\rho \mu} \in\{0,1\}$: gene i in given cell type \& phase

Inspiration from neural networks

- Sequences of patterns: $\boldsymbol{\xi}^{1} \rightarrow \boldsymbol{\xi}^{2} \rightarrow \ldots \boldsymbol{\xi}^{P}$ [Sompolinsky, Kanter (1986)]

$$
J_{i j}=\frac{1}{N} \sum_{\mu=1}^{P} \xi_{i}^{\mu+1} \xi_{j}^{\mu} \quad \text { Cycles : } \boldsymbol{\xi}^{P+1}=\boldsymbol{\xi}^{1}
$$

Inspiration from neural networks

－Sequences of patterns： $\boldsymbol{\xi}^{1} \rightarrow \boldsymbol{\xi}^{2} \rightarrow \ldots \boldsymbol{\xi}^{P}$［Sompolinsky，Kanter（1986）］

$$
J_{i j}=\frac{1}{N} \sum_{\mu=1}^{P} \xi_{i}^{\mu+1} \xi_{j}^{\mu} \quad \text { Cycles : } \boldsymbol{\xi}^{P+1}=\boldsymbol{\xi}^{1}
$$

－Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow\left\{\boldsymbol{\xi}^{\rho \mu}\right\} \rightarrow\left\{\left\{\boldsymbol{\xi}^{\rho \mu \lambda}\right\}\right\}$

Inspiration from neural networks

－Sequences of patterns： $\boldsymbol{\xi}^{1} \rightarrow \boldsymbol{\xi}^{2} \rightarrow \ldots \boldsymbol{\xi}^{P}$［Sompolinsky，Kanter（1986）］

$$
J_{i j}=\frac{1}{N} \sum_{\mu=1}^{P} \xi_{i}^{\mu+1} \xi_{j}^{\mu} \quad \text { Cycles : } \boldsymbol{\xi}^{P+1}=\boldsymbol{\xi}^{1}
$$

－Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow\left\{\boldsymbol{\xi}^{\rho \mu}\right\} \rightarrow\left\{\left\{\boldsymbol{\xi}^{\rho \mu \lambda}\right\}\right\}$

Inspiration from neural networks

－Sequences of patterns： $\boldsymbol{\xi}^{1} \rightarrow \boldsymbol{\xi}^{2} \rightarrow \ldots \boldsymbol{\xi}^{P}$［Sompolinsky，Kanter（1986）］

$$
J_{i j}=\frac{1}{N} \sum_{\mu=1}^{P} \xi_{i}^{\mu+1} \xi_{j}^{\mu} \quad \text { Cycles : } \boldsymbol{\xi}^{P+1}=\boldsymbol{\xi}^{1}
$$

－Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow\left\{\boldsymbol{\xi}^{\rho \mu}\right\} \rightarrow\left\{\left\{\boldsymbol{\xi}^{\rho \mu \lambda}\right\}\right\}$

Inspiration from neural networks

- Sequences of patterns: $\boldsymbol{\xi}^{1} \rightarrow \boldsymbol{\xi}^{2} \rightarrow \ldots \boldsymbol{\xi}^{P}$ [Sompolinsky, Kanter (1986)]

$$
J_{i j}=\frac{1}{N} \sum_{\mu=1}^{P} \xi_{i}^{\mu+1} \xi_{j}^{\mu} \quad \text { Cycles : } \boldsymbol{\xi}^{P+1}=\boldsymbol{\xi}^{1}
$$

- Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow\left\{\boldsymbol{\xi}^{\rho \mu}\right\} \rightarrow\left\{\left\{\boldsymbol{\xi}^{\rho \mu \lambda}\right\}\right\}$

Inspiration from neural networks

- Sequences of patterns: $\boldsymbol{\xi}^{1} \rightarrow \boldsymbol{\xi}^{2} \rightarrow \ldots \boldsymbol{\xi}^{P}$ [Sompolinsky, Kanter (1986)]

$$
J_{i j}=\frac{1}{N} \sum_{\mu=1}^{P} \xi_{i}^{\mu+1} \xi_{j}^{\mu} \quad \text { Cycles : } \boldsymbol{\xi}^{P+1}=\boldsymbol{\xi}^{1}
$$

- Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow\left\{\boldsymbol{\xi}^{\rho \mu}\right\} \rightarrow\left\{\left\{\boldsymbol{\xi}^{\rho \mu \lambda}\right\}\right\}$

Inspiration from neural networks

- Sequences of patterns: $\boldsymbol{\xi}^{1} \rightarrow \boldsymbol{\xi}^{2} \rightarrow \ldots \boldsymbol{\xi}^{P}$ [Sompolinsky, Kanter (1986)]

$$
J_{i j}=\frac{1}{N} \sum_{\mu=1}^{P} \xi_{i}^{\mu+1} \xi_{j}^{\mu} \quad \text { Cycles : } \boldsymbol{\xi}^{P+1}=\boldsymbol{\xi}^{1}
$$

- Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow\left\{\boldsymbol{\xi}^{\rho \mu}\right\} \rightarrow\left\{\left\{\boldsymbol{\xi}^{\rho \mu \lambda}\right\}\right\}$

[Parga, Virasoro (1986); Krogh, Herz (1988)]
Markov process [defn as martingale]: $W\left(\xi^{\mu_{1} \ldots \mu_{k+1}} \mid \xi^{\mu_{1} \ldots \mu_{k}}\right)$

Inspiration from neural networks

- Sequences of patterns: $\boldsymbol{\xi}^{1} \rightarrow \boldsymbol{\xi}^{2} \rightarrow \ldots \boldsymbol{\xi}^{P}$ [Sompolinsky, Kanter (1986)]

$$
J_{i j}=\frac{1}{N} \sum_{\mu=1}^{P} \xi_{i}^{\mu+1} \xi_{j}^{\mu} \quad \text { Cycles : } \boldsymbol{\xi}^{P+1}=\boldsymbol{\xi}^{1}
$$

- Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow\left\{\boldsymbol{\xi}^{\rho \mu}\right\} \rightarrow\left\{\left\{\boldsymbol{\xi}^{\rho \mu \lambda}\right\}\right\}$

Markov process [defn as martingale]:

$$
W\left(\xi^{\mu_{1} \ldots \mu_{k+1}} \mid \xi^{\mu_{1} \ldots \mu_{k}}\right)
$$

$J_{i j}=\frac{1}{N}\left\{\sum_{\rho=1}^{M} \frac{\xi_{i}^{\rho} \xi_{j}^{\rho}}{q_{1}}+\sum_{\rho \mu=1}^{M} \frac{\left(\xi_{i}^{\rho \mu}-\xi_{i}^{\rho}\right)\left(\xi_{j}^{\rho \mu}-\xi_{j}^{\rho}\right)}{q_{2}-q_{1}}+\sum_{\rho \mu \lambda=1}^{M} \frac{\left(\xi_{i}^{\rho \mu \lambda}-\xi_{i}^{\rho \mu}\right)\left(\xi_{j}^{\rho \mu \lambda}-\xi_{j}^{\rho \mu}\right)}{1-q_{2}}\right\}$

Inspiration from neural networks

- Sequences of patterns: $\boldsymbol{\xi}^{1} \rightarrow \boldsymbol{\xi}^{2} \rightarrow \ldots \boldsymbol{\xi}^{P}$ [Sompolinsky, Kanter (1986)]

$$
J_{i j}=\frac{1}{N} \sum_{\mu=1}^{P} \xi_{i}^{\mu+1} \xi_{j}^{\mu} \quad \text { Cycles : } \boldsymbol{\xi}^{P+1}=\boldsymbol{\xi}^{1}
$$

- Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow\left\{\boldsymbol{\xi}^{\rho \mu}\right\} \rightarrow\left\{\left\{\boldsymbol{\xi}^{\rho \mu \lambda}\right\}\right\}$

Markov process [defn as martingale]:

$$
W\left(\xi^{\mu_{1} \ldots \mu_{k+1}} \mid \xi^{\mu_{1} \ldots \mu_{k}}\right)
$$

$J_{i j}=\frac{1}{N}\left\{\sum_{\rho=1}^{M} \frac{\xi_{i}^{\rho} \xi_{j}^{\rho}}{q_{1}}+\sum_{\rho \mu=1}^{M} \frac{\left(\xi_{i}^{\rho \mu}-\xi_{i}^{\rho}\right)\left(\xi_{j}^{\rho \mu}-\xi_{j}^{\rho}\right)}{q_{2}-q_{1}}+\sum_{\rho \mu \lambda=1}^{M} \frac{\left(\xi_{i}^{\rho \mu \lambda}-\xi_{i}^{\rho \mu}\right)\left(\xi_{j}^{\rho \mu \lambda}-\xi_{j}^{\rho \mu}\right)}{1-q_{2}}\right\}$

Inspiration from neural networks

- Sequences of patterns: $\boldsymbol{\xi}^{1} \rightarrow \boldsymbol{\xi}^{2} \rightarrow \ldots \boldsymbol{\xi}^{P}$ [Sompolinsky, Kanter (1986)]

$$
J_{i j}=\frac{1}{N} \sum_{\mu=1}^{P} \xi_{i}^{\mu+1} \xi_{j}^{\mu} \quad \text { Cycles : } \boldsymbol{\xi}^{P+1}=\boldsymbol{\xi}^{1}
$$

- Patterns hierarchically organized $\boldsymbol{\xi}^{\rho} \rightarrow\left\{\boldsymbol{\xi}^{\rho \mu}\right\} \rightarrow\left\{\left\{\boldsymbol{\xi}^{\rho \mu \lambda}\right\}\right\}$

[Parga, Virasoro (1986); Krogh, Herz (1988)]
Markov process [defn as martingale]:

$$
W\left(\xi^{\mu_{1} \ldots \mu_{k+1}} \mid \xi^{\mu_{1} \ldots \mu_{k}}\right)
$$

$J_{i j}=\frac{1}{N}\left\{\sum_{\rho=1}^{M} \frac{\xi_{i}^{\rho} \xi_{j}^{\rho}}{q_{1}}+\sum_{\rho \mu=1}^{M} \frac{\left(\xi_{i}^{\rho \mu}-\xi_{i}^{\rho}\right)\left(\xi_{j}^{\rho \mu}-\xi_{j}^{\rho}\right)}{q_{2}-q_{1}}+\sum_{\rho \mu \lambda=1}^{M} \frac{\left(\xi_{i}^{\rho \mu \lambda}-\xi_{i}^{\rho \mu}\right)\left(\xi_{j}^{\rho \mu \lambda}-\xi_{j}^{\rho \mu}\right)}{1-q_{2}}\right\}$
\Rightarrow Combine and adapt to 0,1 variables.. (for a more general W)

Outline

(1) Motivation
(2) Model inspired by neural networks

- Model definition
- Results
(3) Introducing TFs: a bipartite graph model
- Model definition
- Percolation theory
- Dynamics
- One-time approximation
- Extensions: Multi-node and self-interactions

Results

get eqns. for correlations of \mathbf{n} with $\boldsymbol{\eta}^{\rho}\left(m_{\rho}\right.$, full) and with $\boldsymbol{\eta}^{\rho \mu}\left(m_{\rho \mu}\right.$, dashed). Here $\rho=1,2,3$.

Results

get eqns. for correlations of \mathbf{n} with $\boldsymbol{\eta}^{\rho}\left(m_{\rho}\right.$, full $)$ and with $\boldsymbol{\eta}^{\rho \mu}\left(m_{\rho \mu}\right.$, dashed). Here $\rho=1,2,3$.

Dependence on noise level

Results

get eqns. for correlations of \mathbf{n} with $\boldsymbol{\eta}^{\rho}\left(m_{\rho}\right.$, full $)$ and with $\boldsymbol{\eta}^{\rho \mu}\left(m_{\rho \mu}\right.$, dashed). Here $\rho=1,2,3$.

Dependence on noise level

De-differentiation, $\mathrm{T}=0.14$

Results

get eqns. for correlations of \mathbf{n} with $\boldsymbol{\eta}^{\rho}\left(m_{\rho}\right.$, full $)$ and with $\boldsymbol{\eta}^{\rho \mu}\left(m_{\rho \mu}\right.$, dashed). Here $\rho=1,2,3$.

Dependence on noise level

De-differentiation, $\mathrm{T}=0.14$

Results

get eqns. for correlations of \mathbf{n} with $\boldsymbol{\eta}^{\rho}\left(m_{\rho}\right.$, full $)$ and with $\boldsymbol{\eta}^{\rho \mu}\left(m_{\rho \mu}\right.$, dashed). Here $\rho=1,2,3$.

Dependence on noise level

De-differentiation, $\mathrm{T}=0.14$

Note: de-differentiation takes $\mathcal{O}(10)$ cycles.
[R Hannam, AA, R Kühn, J Phys A (2017)]

Results

- Apply direct perturbation to genes to drive transition from somatic \rightarrow stem cell

Results

- Apply direct perturbation to genes to drive transition from somatic \rightarrow stem cell

Results

－Apply direct perturbation to genes to drive transition from somatic \rightarrow stem cell

Correlations vs fraction q of perturbed genes，$T=0.01$ ．

Results

- Apply direct perturbation to genes to drive transition from somatic \rightarrow stem cell

Correlations vs fraction q of perturbed genes, $T=0.01$.

Critical fraction of genes $q_{r} \in[0.1,0.2]$ (\searrow when $T \nearrow$)
[R Hannam, AA, R Kühn, J Phys A (2017)]

Results

- If we include in the system only regulatory genes:

$$
N_{r} \simeq 0.1 N \simeq 2,500 \quad \Rightarrow \quad q_{r} N_{r} \simeq 250-500 \text { genes }
$$

Results

- If we include in the system only regulatory genes:

$$
N_{r} \simeq 0.1 N \simeq 2,500 \quad \Rightarrow \quad q_{r} N_{r} \simeq 250-500 \text { genes }
$$

Results

- If we include in the system only regulatory genes:

$$
N_{r} \simeq 0.1 N \simeq 2,500 \quad \Rightarrow \quad q_{r} N_{r} \simeq 250-500 \text { genes }
$$

Also:

- each Yamanaka TF involved in regulating $\mathcal{O}(100)$ genes

Results

- If we include in the system only regulatory genes:

$$
N_{r} \simeq 0.1 N \simeq 2,500 \quad \Rightarrow \quad q_{r} N_{r} \simeq 250-500 \text { genes }
$$

Also:

- each Yamanaka TF involved in regulating $\mathcal{O}(100)$ genes

Results

- If we include in the system only regulatory genes:

$$
N_{r} \simeq 0.1 N \simeq 2,500 \quad \Rightarrow \quad q_{r} N_{r} \simeq 250-500 \text { genes }
$$

Also:

- each Yamanaka TF involved in regulating $\mathcal{O}(100)$ genes
\Rightarrow can perturb $q_{r} N_{r}$ genes with $\mathcal{O}(3-5)$ TFs! (Yamanaka territory!)

Results

- If we include in the system only regulatory genes:

$$
N_{r} \simeq 0.1 N \simeq 2,500 \quad \Rightarrow \quad q_{r} N_{r} \simeq 250-500 \text { genes }
$$

Also:

- each Yamanaka TF involved in regulating $\mathcal{O}(100)$ genes
\Rightarrow can perturb $q_{r} N_{r}$ genes with $\mathcal{O}(3-5)$ TFs! (Yamanaka territory!)

Q: Biological grounds for interactions?

Outline

(1) Motivation
(2) Model inspired by neural networks

- Model definition
- Results
(3) Introducing TFs: a bipartite graph model
- Model definition
- Percolation theory
- Dynamics
- One-time approximation
- Extensions: Multi-node and self-interactions

A bipartite graph approach

A bipartite graph approach

A bipartite graph approach

Different types of logic for TFs:

A bipartite graph approach

$n_{i}(t+1)=\Theta\left[\sum_{\mu} \xi_{i}^{\mu} \tau_{\mu}(t)-\vartheta_{i}-z_{i}(t)\right], \quad \tau_{\mu}(t)=$ concentration of TF μ at t
Different types of logic for TFs:

- AND: TF μ 'ON' if all contributing genes 'ON'

$$
\tau_{\mu}(t)=\prod_{j: \eta_{j}^{\mu}=1} n_{j}(t)
$$

A bipartite graph approach

$n_{i}(t+1)=\Theta\left[\sum_{\mu} \xi_{i}^{\mu} \tau_{\mu}(t)-\vartheta_{i}-z_{i}(t)\right], \quad \tau_{\mu}(t)=$ concentration of $\mathrm{TF} \mu$ at t
Different types of logic for TFs:

- AND: TF μ 'ON' if all contributing genes 'ON'

$$
\tau_{\mu}(t)=\prod_{j: \eta_{j}^{\mu}=1} n_{j}(t)
$$

- OR: TF μ 'ON' if at least one contributing gene 'ON'

$$
\tau_{\mu}(t)=\frac{1}{c_{\mu}^{\mathrm{in}}} \sum_{j} \eta_{j}^{\mu} n_{j}(t)
$$

Linear vs non-linear threshold dynamics

OR: linear threshold model

Linear vs non-linear threshold dynamics

OR: linear threshold model

$$
n_{i}(t+1)=\Theta[\sum_{j} \underbrace{\sum_{\mu} \frac{\xi_{i}^{\mu} \eta_{j}^{\mu}}{c_{\mu}^{\mathrm{in}}}}_{J_{i j}} n_{j}(t)-\vartheta_{i}-z_{i}(t)]
$$

Linear vs non-linear threshold dynamics

OR: linear threshold model

$$
n_{i}(t+1)=\Theta[\sum_{j} \underbrace{\sum_{\mu} \frac{\xi_{i}^{\mu} \eta_{j}^{\mu}}{c_{\mu}^{\text {in }}}}_{J_{i j}} n_{j}(t)-\vartheta_{i}-z_{i}(t)]
$$

Linear vs non-linear threshold dynamics

OR: linear threshold model

$$
n_{i}(t+1)=\Theta[\sum_{j} \underbrace{\sum_{\mu} \frac{\xi_{i}^{\mu} \eta_{j}^{\mu}}{c_{\mu}^{\text {in }}}}_{J_{i j}} n_{j}(t)-\vartheta_{i}-z_{i}(t)]
$$

Linear vs non-linear threshold dynamics

OR: linear threshold model

$$
n_{i}(t+1)=\Theta[\sum_{j} \underbrace{\sum_{\mu} \frac{\xi_{i}^{\mu} \eta_{j}^{\mu}}{c_{\mu}^{\text {in }}}}_{J_{i j}} n_{j}(t)-\vartheta_{i}-z_{i}(t)]
$$

- Reminiscent of Neural networks with sparse patterns $\xi_{i}^{\mu}=0, \pm 1$

$$
J_{i j}=\sum_{\mu} \frac{\xi_{i}^{\mu} \xi_{j}^{\mu}}{c_{\mu}}
$$

Linear vs non-linear threshold dynamics

OR: linear threshold model

$$
n_{i}(t+1)=\Theta[\sum_{j} \underbrace{\sum_{\mu} \frac{\xi_{i}^{\mu} \eta_{j}^{\mu}}{c_{\mu}^{\text {in }}}}_{J_{i j}} n_{j}(t)-\vartheta_{i}-z_{i}(t)]
$$

- Reminiscent of Neural networks with sparse patterns $\xi_{i}^{\mu}=0, \pm 1$

$$
J_{i j}=\sum_{\mu} \frac{\xi_{i}^{\mu} \xi_{j}^{\mu}}{c_{\mu}}
$$

Linear vs non-linear threshold dynamics

OR: linear threshold model

$$
n_{i}(t+1)=\Theta[\sum_{j} \underbrace{\sum_{\mu} \frac{\xi_{i}^{\mu} \eta_{j}^{\mu}}{c_{\mu}^{\text {in }}}}_{J_{i j}} n_{j}(t)-\vartheta_{i}-z_{i}(t)]
$$

- Reminiscent of Neural networks with sparse patterns $\xi_{i}^{\mu}=0, \pm 1$

$$
\begin{aligned}
J_{i j}=\sum_{\mu} \frac{\xi_{i}^{\mu} \xi_{j}^{\mu}}{c_{\mu}} & \Rightarrow \text { parallel retrieval of patterns } \\
& {[\text { Agliari, AA, Barra, Coolen, Tantari, JPA (2013)] }} \\
& {[\text { Sollich, Tantari, AA, Barra, PRL (2014)] }}
\end{aligned}
$$

Linear vs non-linear threshold dynamics

OR: linear threshold model

$$
n_{i}(t+1)=\Theta[\sum_{j} \underbrace{\sum_{\mu} \frac{\xi_{i}^{\mu} \eta_{j}^{\mu}}{c_{\mu}^{\text {in }}}}_{J_{i j}} n_{j}(t)-\vartheta_{i}-z_{i}(t)]
$$

- Reminiscent of Neural networks with sparse patterns $\xi_{i}^{\mu}=0, \pm 1$

$$
\begin{aligned}
J_{i j}=\sum_{\mu} \frac{\xi_{i}^{\mu} \xi_{j}^{\mu}}{c_{\mu}} & \Rightarrow \text { parallel retrieval of patterns } \\
& {[\text { Agliari, AA, Barra, Coolen, Tantari, JPA (2013)] }} \\
& {[\text { Sollich, Tantari, AA, Barra, PRL (2014)] }}
\end{aligned}
$$

BUT: here $\xi_{i}^{\mu} \in\{0, \pm 1\}$ and $\eta_{i}^{\mu} \in\{0,1\} \Rightarrow J_{i j} \neq J_{j i}$

Linear vs non-linear threshold dynamics

OR: linear threshold model

$$
n_{i}(t+1)=\Theta[\sum_{j} \underbrace{\sum_{\mu} \frac{\xi_{i}^{\mu} \eta_{j}^{\mu}}{c_{\mu}^{\text {in }}}}_{J_{i j}} n_{j}(t)-\vartheta_{i}-z_{i}(t)]
$$

- Reminiscent of Neural networks with sparse patterns $\xi_{i}^{\mu}=0, \pm 1$

$$
\begin{aligned}
J_{i j}=\sum_{\mu} \frac{\xi_{i}^{\mu} \xi_{j}^{\mu}}{c_{\mu}} & \Rightarrow \text { parallel retrieval of patterns } \\
& \begin{aligned}
& {[\text { Agliari, AA, Barra, Coolen, Tantari, JPA }(2013)] } \\
& {[\text { Sollich, Tantari, AA, Barra, PRL (2014)] }}
\end{aligned}
\end{aligned}
$$

BUT: here $\xi_{i}^{\mu} \in\{0, \pm 1\}$ and $\eta_{i}^{\mu} \in\{0,1\} \Rightarrow J_{i j} \neq J_{j i}$
AND: non-linear threshold model

$$
n_{i}(t+1)=\Theta\left[\sum_{\mu} \xi_{i}^{\mu} \prod_{j: \eta_{i}^{\mu}=1} n_{j}(t)-\vartheta_{i}-z_{i}(t)\right]
$$

Linear vs non-linear threshold dynamics

OR: linear threshold model

$$
n_{i}(t+1)=\Theta[\sum_{j} \underbrace{\sum_{\mu} \frac{\xi_{i}^{\mu} \eta_{j}^{\mu}}{c_{\mu}^{\text {in }}}}_{J_{i j}} n_{j}(t)-\vartheta_{i}-z_{i}(t)]
$$

- Reminiscent of Neural networks with sparse patterns $\xi_{i}^{\mu}=0, \pm 1$

$$
\begin{aligned}
J_{i j}=\sum_{\mu} \frac{\xi_{i}^{\mu} \xi_{j}^{\mu}}{c_{\mu}} & \Rightarrow \text { parallel retrieval of patterns } \\
& \begin{aligned}
& {[\text { Agliari, AA, Barra, Coolen, Tantari, JPA (2013)] }} \\
& {[\text { Sollich, Tantari, AA, Barra, PRL (2014)] }}
\end{aligned}
\end{aligned}
$$

BUT: here $\xi_{i}^{\mu} \in\{0, \pm 1\}$ and $\eta_{i}^{\mu} \in\{0,1\} \Rightarrow J_{i j} \neq J_{j i}$
AND: non-linear threshold model

$$
n_{i}(t+1)=\Theta\left[\sum_{\mu} \xi_{i}^{\mu} \prod_{j: \eta_{i}^{\mu}=1} n_{j}(t)-\vartheta_{i}-z_{i}(t)\right]
$$

- asymmetric multi-node interactions (as opposed to pairwise)

Outline

（1）Motivation
（2）Model inspired by neural networks
－Model definition
－Results
（3）Introducing TFs：a bipartite graph model
－Model definition
－Percolation theory
－Dynamics
－One－time approximation
－Extensions：Multi－node and self－interactions

Percolation

Q: For which model's parameters can have non-trivial attractors?

Percolation

Q: For which model's parameters can have non-trivial attractors? A: Noisy finite systems are ergodic \Rightarrow Giant Component (GC) for multiplicity of attractors \Rightarrow Percolation theory

Percolation

Q: For which model's parameters can have non-trivial attractors? A: Noisy finite systems are ergodic \Rightarrow Giant Component (GC) for multiplicity of attractors \Rightarrow Percolation theory

AND:

- GC stable if $\left\langle c^{\mathrm{in}}\right\rangle_{\mathrm{TF}} P_{G}\left(d^{\mathrm{in}}=1\right)<1$
$\Rightarrow \mathrm{TFs}$ should be small complexes

Percolation

Q: For which model's parameters can have non-trivial attractors? A: Noisy finite systems are ergodic \Rightarrow Giant Component (GC) for multiplicity of attractors \Rightarrow Percolation theory

AND:

- GC stable if $\left\langle c^{\mathrm{in}}\right\rangle_{\mathrm{TF}} P_{G}\left(d^{\mathrm{in}}=1\right)<1$
$\Rightarrow \mathrm{TFs}$ should be small complexes

Percolation

Q：For which model＇s parameters can have non－trivial attractors？
A：Noisy finite systems are ergodic \Rightarrow Giant Component（GC）for multiplicity of attractors \Rightarrow Percolation theory

AND：
－GC stable if $\left\langle c^{\mathrm{in}}\right\rangle_{\mathrm{TF}} P_{G}\left(d^{\mathrm{in}}=1\right)<1$

\Rightarrow TFs should be small complexes
$c^{\text {in }}$
－GC only stable solution if $\alpha\left\langle c^{\text {out }}\right\rangle_{\mathrm{TF}} P_{\mathrm{TF}}\left(c^{\text {in }}=1\right)>1$

Percolation

Q: For which model's parameters can have non-trivial attractors?
A: Noisy finite systems are ergodic \Rightarrow Giant Component (GC) for multiplicity of attractors \Rightarrow Percolation theory

AND:

- GC stable if $\left\langle c^{\mathrm{in}}\right\rangle_{\mathrm{TF}} P_{G}\left(d^{\mathrm{in}}=1\right)<1$
$\Rightarrow \mathrm{TFs}$ should be small complexes

- GC only stable solution if $\alpha\left\langle c^{\text {out }}\right\rangle_{\mathrm{TF}} P_{\mathrm{TF}}\left(c^{\text {in }}=1\right)>1$
\Rightarrow TFs should regulate sufficiently many genes

Percolation

Q: For which model's parameters can have non-trivial attractors?
A: Noisy finite systems are ergodic \Rightarrow Giant Component (GC) for multiplicity of attractors \Rightarrow Percolation theory

AND:

- GC stable if $\left\langle c^{\mathrm{in}}\right\rangle_{\mathrm{TF}} P_{G}\left(d^{\mathrm{in}}=1\right)<1$
$\Rightarrow \mathrm{TFs}$ should be small complexes

- GC only stable solution if $\alpha\left\langle c^{\text {out }}\right\rangle_{\mathrm{TF}} P_{\mathrm{TF}}\left(c^{\text {in }}=1\right)>1$
\Rightarrow TFs should regulate sufficiently many genes

OR:

- GC only stable option for $\alpha\left\langle c^{\text {in }}\right\rangle_{\mathrm{TF}}\left\langle c^{\text {out }}\right\rangle_{\mathrm{TF}}>1$

Percolation

Q: For which model's parameters can have non-trivial attractors?
A: Noisy finite systems are ergodic \Rightarrow Giant Component (GC) for multiplicity of attractors \Rightarrow Percolation theory

AND:

- GC stable if $\left\langle c^{\mathrm{in}}\right\rangle_{\mathrm{TF}} P_{G}\left(d^{\mathrm{in}}=1\right)<1$
$\Rightarrow \mathrm{TFs}$ should be small complexes

- GC only stable solution if $\alpha\left\langle c^{\text {out }}\right\rangle_{\mathrm{TF}} P_{\mathrm{TF}}\left(c^{\text {in }}=1\right)>1$
\Rightarrow TFs should regulate sufficiently many genes

OR:

- GC only stable option for $\alpha\left\langle c^{\text {in }}\right\rangle_{\mathrm{TF}}\left\langle c^{\text {out }}\right\rangle_{\mathrm{TF}}>1$

Percolation

Q: For which model's parameters can have non-trivial attractors?
A: Noisy finite systems are ergodic \Rightarrow Giant Component (GC) for multiplicity of attractors \Rightarrow Percolation theory

AND:

- GC stable if $\left\langle c^{\mathrm{in}}\right\rangle_{\mathrm{TF}} P_{G}\left(d^{\mathrm{in}}=1\right)<1$
$\Rightarrow \mathrm{TFs}$ should be small complexes

- GC only stable solution if $\alpha\left\langle c^{\text {out }}\right\rangle_{\mathrm{TF}} P_{\mathrm{TF}}\left(c^{\text {in }}=1\right)>1$
\Rightarrow TFs should regulate sufficiently many genes
OR:
- GC only stable option for $\alpha\left\langle c^{\text {in }}\right\rangle_{\mathrm{TF}}\left\langle c^{\text {out }}\right\rangle_{\mathrm{TF}}>1$

TFs indeed small complexes which regulate many genes!
[Hannam, Kühn, AA, JPA (2019); Torrisi, Kühn, AA, JSTAT (2020)]

Outline

（1）Motivation
（2）Model inspired by neural networks
－Model definition
－Results
（3）Introducing TFs：a bipartite graph model
－Model definition
－Percolation theory
－Dynamics
－One－time approximation
－Extensions：Multi－node and self－interactions

Dynamics

- Linear threshold model

$$
n_{i}(t+1)=\Theta\left[h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)-\vartheta_{i}-z_{i}(t)\right] \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)=\sum_{j} J_{i j} n_{j}(t)
$$

Dynamics

- Linear threshold model

$$
n_{i}(t+1)=\Theta\left[h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)-\vartheta_{i}-z_{i}(t)\right] \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)=\sum_{j} J_{i j} n_{j}(t)
$$

Dynamics

- Linear threshold model

$$
n_{i}(t+1)=\Theta\left[h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)-\vartheta_{i}-z_{i}(t)\right] \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)=\sum_{j} J_{i j} n_{j}(t)
$$

$$
{ }^{i} \stackrel{J_{i j}}{ }
$$

Dynamics

- Linear threshold model

$$
n_{i}(t+1)=\Theta\left[h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)-\vartheta_{i}-z_{i}(t)\right] \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)=\sum_{j} J_{i j} n_{j}(t)
$$

$z_{i}(t)$ random with $\operatorname{Prob}[z \leq x]=\Phi_{T}(x)$

Dynamics

- Linear threshold model

$$
n_{i}(t+1)=\Theta\left[h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)-\vartheta_{i}-z_{i}(t)\right] \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)=\sum_{j} J_{i j} n_{j}(t)
$$

$$
z_{i}(t) \text { random with } \operatorname{Prob}[z \leq x]=\Phi_{T}(x)
$$

- Interested in activation probability $P_{i}(t)=\operatorname{Prob}\left(n_{i}(t)=1\right)$

$$
P_{i}(t+1)=\left\langle\Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right)\right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \quad\langle\ldots\rangle_{\boldsymbol{n}_{\partial_{i}}, t}=\sum_{\boldsymbol{n}_{\partial_{i}}} \ldots P\left(\boldsymbol{n}_{\partial_{i}}, t\right)
$$

Dynamics

- Linear threshold model

$$
n_{i}(t+1)=\Theta\left[h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)-\vartheta_{i}-z_{i}(t)\right] \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)=\sum_{j} J_{i j} n_{j}(t)
$$

$$
z_{i}(t) \text { random with } \operatorname{Prob}[z \leq x]=\Phi_{T}(x)
$$

- Interested in activation probability $P_{i}(t)=\operatorname{Prob}\left(n_{i}(t)=1\right)$

$$
P_{i}(t+1)=\left\langle\Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right)\right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \quad\langle\ldots\rangle_{\boldsymbol{n}_{\partial_{i}}, t}=\sum_{\boldsymbol{n}_{\partial_{i}}} \ldots P\left(\boldsymbol{n}_{\partial_{i}}, t\right)
$$

- Bethe lattice: Cavity method [Mezard \& Parisi, (2001)]

Dynamics

- Linear threshold model

$$
n_{i}(t+1)=\Theta\left[h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)-\vartheta_{i}-z_{i}(t)\right] \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)=\sum_{j} J_{i j} n_{j}(t)
$$

$$
z_{i}(t) \text { random with } \operatorname{Prob}[z \leq x]=\Phi_{T}(x)
$$

- Interested in activation probability $P_{i}(t)=\operatorname{Prob}\left(n_{i}(t)=1\right)$

$$
P_{i}(t+1)=\left\langle\Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right)\right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \quad\langle\ldots\rangle_{\boldsymbol{n}_{\partial_{i}}, t}=\sum_{\boldsymbol{n}_{\partial_{i}}} \ldots P\left(\boldsymbol{n}_{\partial_{i}}, t\right)
$$

- Bethe lattice: Cavity method [Mezard \& Parisi, (2001)]

Dynamics

- Linear threshold model

$$
\begin{aligned}
& n_{i}(t+1)=\Theta\left[h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)-\vartheta_{i}-z_{i}(t)\right] \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)=\sum_{j} J_{i j} n_{j}(t) \\
& \mathbf{J}_{\mathrm{ij}} \boldsymbol{o}_{i}^{\mathrm{j}}(t) \text { random with } \operatorname{Prob}[z<x]=\Phi_{T}(x)
\end{aligned}
$$

$$
z_{i}(t) \text { random with } \operatorname{Prob}[z \leq x]=\Phi_{T}(x)
$$

- Interested in activation probability $P_{i}(t)=\operatorname{Prob}\left(n_{i}(t)=1\right)$

$$
P_{i}(t+1)=\left\langle\Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right)\right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \quad\langle\ldots\rangle_{\boldsymbol{n}_{\partial_{i}}, t}=\sum_{\boldsymbol{n}_{\partial_{i}}} \ldots P\left(\boldsymbol{n}_{\partial_{i}}, t\right)
$$

- Bethe lattice: Cavity method [Mezard \& Parisi, (2001)]

Dynamics

- Linear threshold model

$$
\begin{aligned}
& n_{i}(t+1)=\Theta\left[h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)-\vartheta_{i}-z_{i}(t)\right] \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)=\sum_{j} J_{i j} n_{j}(t) \\
& \mathbf{J}_{\mathrm{ij}} \boldsymbol{o}_{i}(t) \text { random with } \operatorname{Prob}[z<x]=\Phi_{T}(x)
\end{aligned}
$$

$$
z_{i}(t) \text { random with } \operatorname{Prob}[z \leq x]=\Phi_{T}(x)
$$

- Interested in activation probability $P_{i}(t)=\operatorname{Prob}\left(n_{i}(t)=1\right)$

$$
P_{i}(t+1)=\left\langle\Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right)\right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \quad\langle\ldots\rangle_{\boldsymbol{n}_{\partial_{i}}, t}=\sum_{\boldsymbol{n}_{\partial_{i}}} \ldots P\left(\boldsymbol{n}_{\partial_{i}}, t\right)
$$

- Bethe lattice: Cavity method [Mezard \& Parisi, (2001)]

$$
P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}\right)=\prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}\right)
$$

Dynamics

- Linear threshold model

$$
\begin{aligned}
& n_{i}(t+1)=\Theta\left[h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)-\vartheta_{i}-z_{i}(t)\right] \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)=\sum_{j} J_{i j} n_{j}(t) \\
& \mathbf{J}_{\mathrm{ij}} \boldsymbol{o}_{i}(t) \text { random with } \operatorname{Prob}[z<x]=\Phi_{T}(x)
\end{aligned}
$$

$$
z_{i}(t) \text { random with } \operatorname{Prob}[z \leq x]=\Phi_{T}(x)
$$

- Interested in activation probability $P_{i}(t)=\operatorname{Prob}\left(n_{i}(t)=1\right)$

$$
P_{i}(t+1)=\left\langle\Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right)\right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \quad\langle\ldots\rangle_{\boldsymbol{n}_{\partial_{i}}, t}=\sum_{\boldsymbol{n}_{\partial_{i}}} \ldots P\left(\boldsymbol{n}_{\partial_{i}}, t\right)
$$

- Bethe lattice: Cavity method [Mezard \& Parisi, (2001)]

$$
P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}\right)=\prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}\right)
$$

Dynamics

- Linear threshold model

$$
\begin{aligned}
& n_{i}(t+1)=\Theta\left[h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)-\vartheta_{i}-z_{i}(t)\right] \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)=\sum_{j} J_{i j} n_{j}(t) \\
& \mathbf{J}_{\mathrm{ij}} \boldsymbol{o}_{i}^{\mathrm{j}}(t) \text { random with } \operatorname{Prob}[z<x]=\Phi_{T}(x)
\end{aligned}
$$

$$
z_{i}(t) \text { random with } \operatorname{Prob}[z \leq x]=\Phi_{T}(x)
$$

- Interested in activation probability $P_{i}(t)=\operatorname{Prob}\left(n_{i}(t)=1\right)$

$$
P_{i}(t+1)=\left\langle\Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right)\right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \quad\langle\ldots\rangle_{\boldsymbol{n}_{\partial_{i}}, t}=\sum_{\boldsymbol{n}_{\partial_{i}}} \ldots P\left(\boldsymbol{n}_{\partial_{i}}, t\right)
$$

- Bethe lattice: Cavity method [Mezard \& Parisi, (2001)]

$$
P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}\right)=\prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}\right)
$$

- Fully-asymmetric $J_{i j} J_{j i}=0$ [Neri \& Bollé, JSTAT (2009)]

Dynamics

- Linear threshold model

$$
\begin{aligned}
& n_{i}(t+1)=\Theta\left[h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)-\vartheta_{i}-z_{i}(t)\right] \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)=\sum_{j} J_{i j} n_{j}(t) \\
& \mathbf{J}_{\mathrm{ij}} \boldsymbol{o}_{i}^{\mathrm{j}}(t) \text { random with } \operatorname{Prob}[z<x]=\Phi_{T}(x)
\end{aligned}
$$

$$
z_{i}(t) \text { random with } \operatorname{Prob}[z \leq x]=\Phi_{T}(x)
$$

- Interested in activation probability $P_{i}(t)=\operatorname{Prob}\left(n_{i}(t)=1\right)$

$$
P_{i}(t+1)=\left\langle\Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right)\right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \quad\langle\ldots\rangle_{\boldsymbol{n}_{\partial_{i}}, t}=\sum_{\boldsymbol{n}_{\partial_{i}}} \ldots P\left(\boldsymbol{n}_{\partial_{i}}, t\right)
$$

- Bethe lattice: Cavity method [Mezard \& Parisi, (2001)]

$$
P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}\right)=\prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}\right)
$$

- Fully-asymmetric $J_{i j} J_{j i}=0$ [Neri \& Bollé, JSTAT (2009)]

Dynamics

- Linear threshold model

$$
\begin{aligned}
& n_{i}(t+1)=\Theta\left[h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)-\vartheta_{i}-z_{i}(t)\right] \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)=\sum_{j} J_{i j} n_{j}(t) \\
& \mathbf{J}_{\mathrm{ij}}
\end{aligned}
$$

$$
z_{i}(t) \text { random with } \operatorname{Prob}[z \leq x]=\Phi_{T}(x)
$$

- Interested in activation probability $P_{i}(t)=\operatorname{Prob}\left(n_{i}(t)=1\right)$

$$
P_{i}(t+1)=\left\langle\Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right)\right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \quad\langle\ldots\rangle_{\boldsymbol{n}_{\partial_{i}}, t}=\sum_{\boldsymbol{n}_{\partial_{i}}} \ldots P\left(\boldsymbol{n}_{\partial_{i}}, t\right)
$$

- Bethe lattice: Cavity method [Mezard \& Parisi, (2001)]

$$
P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}\right)=\prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}\right)
$$

- Fully-asymmetric $J_{i j} J_{j i}=0$ [Neri \& Bollé, JSTAT (2009)]

Dynamics

- Linear threshold model

$$
\begin{aligned}
& n_{i}(t+1)=\Theta\left[h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)-\vartheta_{i}-z_{i}(t)\right] \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)=\sum_{j} J_{i j} n_{j}(t) \\
& \mathbf{J}_{\mathrm{ij}}
\end{aligned}
$$

$$
z_{i}(t) \text { random with } \operatorname{Prob}[z \leq x]=\Phi_{T}(x)
$$

- Interested in activation probability $P_{i}(t)=\operatorname{Prob}\left(n_{i}(t)=1\right)$

$$
P_{i}(t+1)=\left\langle\Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right)\right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \quad\langle\ldots\rangle_{\boldsymbol{n}_{\partial_{i}}, t}=\sum_{\boldsymbol{n}_{\partial_{i}}} \ldots P\left(\boldsymbol{n}_{\partial_{i}}, t\right)
$$

- Bethe lattice: Cavity method [Mezard \& Parisi, (2001)]

$$
P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}\right)=\prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}\right)
$$

- Fully-asymmetric $J_{i j} J_{j i}=0$ [Neri \& Bollé, JSTAT (2009)]

$$
P\left(\boldsymbol{n}_{\partial_{i}}, t\right)=P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}, t\right)
$$

Dynamics

- Linear threshold model

$$
\begin{aligned}
& n_{i}(t+1)=\Theta\left[h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)-\vartheta_{i}-z_{i}(t)\right] \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)=\sum_{j} J_{i j} n_{j}(t) \\
& \mathbf{J}_{\mathrm{ij}}
\end{aligned}
$$

$$
z_{i}(t) \text { random with } \operatorname{Prob}[z \leq x]=\Phi_{T}(x)
$$

- Interested in activation probability $P_{i}(t)=\operatorname{Prob}\left(n_{i}(t)=1\right)$

$$
P_{i}(t+1)=\left\langle\Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right)\right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \quad\langle\ldots\rangle_{\boldsymbol{n}_{\partial_{i}}, t}=\sum_{\boldsymbol{n}_{\partial_{i}}} \ldots P\left(\boldsymbol{n}_{\partial_{i}}, t\right)
$$

- Bethe lattice: Cavity method [Mezard \& Parisi, (2001)]

$$
P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}\right)=\prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}\right)
$$

- Fully-asymmetric $J_{i j} J_{j i}=0$ [Neri \& Bollé, JSTAT (2009)]

$$
P\left(\boldsymbol{n}_{\partial_{i}}, t\right)=P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}, t\right)
$$

Dynamics

- Linear threshold model

$$
\begin{aligned}
& n_{i}(t+1)=\Theta\left[h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)-\vartheta_{i}-z_{i}(t)\right] \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)=\sum_{j} J_{i j} n_{j}(t) \\
& \mathbf{J}_{\mathrm{ij}}
\end{aligned}
$$

$$
z_{i}(t) \text { random with } \operatorname{Prob}[z \leq x]=\Phi_{T}(x)
$$

- Interested in activation probability $P_{i}(t)=\operatorname{Prob}\left(n_{i}(t)=1\right)$

$$
P_{i}(t+1)=\left\langle\Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right)\right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \quad\langle\ldots\rangle_{\boldsymbol{n}_{\partial_{i}}, t}=\sum_{\boldsymbol{n}_{\partial_{i}}} \ldots P\left(\boldsymbol{n}_{\partial_{i}}, t\right)
$$

- Bethe lattice: Cavity method [Mezard \& Parisi, (2001)]

$$
P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}\right)=\prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}\right)
$$

- Fully-asymmetric $J_{i j} J_{j i}=0$ [Neri \& Bollé, JSTAT (2009)]

$$
P\left(\boldsymbol{n}_{\partial_{i}}, t\right)=P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}, t\right)=\prod_{j \in \partial_{i}} P_{j}\left(n_{j}, t\right)
$$

Dynamics

- Linear threshold model

$$
\begin{aligned}
& n_{i}(t+1)=\Theta\left[h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)-\vartheta_{i}-z_{i}(t)\right] \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}(t)\right)=\sum_{j} J_{i j} n_{j}(t) \\
& z_{i j}(t) \text { random with } \operatorname{Prob}[z<r]=\Phi_{T}(x)
\end{aligned}
$$

$$
z_{i}(t) \text { random with } \operatorname{Prob}[z \leq x]=\Phi_{T}(x)
$$

- Interested in activation probability $P_{i}(t)=\operatorname{Prob}\left(n_{i}(t)=1\right)$

$$
P_{i}(t+1)=\left\langle\Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right)\right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \quad\langle\ldots\rangle_{\boldsymbol{n}_{\partial_{i}}, t}=\sum_{\boldsymbol{n}_{\partial_{i}}} \ldots P\left(\boldsymbol{n}_{\partial_{i}}, t\right)
$$

- Bethe lattice: Cavity method [Mezard \& Parisi, (2001)]

$$
P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}\right)=\prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}\right)
$$

- Fully-asymmetric $J_{i j} J_{j i}=0$ [Neri \& Bollé, JSTAT (2009)]

$$
\begin{gathered}
P\left(\boldsymbol{n}_{\partial_{i}}, t\right)=P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}, t\right)=\prod_{j \in \partial_{i}} P_{j}\left(n_{j}, t\right) \\
P_{i}(t+1)=\sum_{\boldsymbol{n}_{\partial_{i}}} \Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right) \prod_{j \in \partial_{i}} P_{j}(t)^{n_{j}}\left[1-P_{j}(t)\right]^{1-n_{j}}
\end{gathered}
$$

Dynamic programming

Solve iteratively：$t=0,1, \ldots$ BUT exponential complexity： $2^{\left|\partial_{i}\right|}$

Dynamic programming

Solve iteratively: $t=0,1, \ldots \quad$ BUT exponential complexity: $2^{\left|\partial_{i}\right|}$

- For binary $J_{i j}= \pm J: \mathcal{O}\left(\sum_{i} 2^{\left|\partial_{i}\right|}\right) \quad \Rightarrow \quad \mathcal{O}\left(\sum_{i}\left|\partial_{i}\right|^{2}\right)$

Dynamic programming

Solve iteratively: $t=0,1, \ldots \quad$ BUT exponential complexity: $2^{\left|\partial_{i}\right|}$

- For binary $J_{i j}= \pm J: \mathcal{O}\left(\sum_{i} 2^{\left|\partial_{i}\right|}\right) \quad \Rightarrow \quad \mathcal{O}\left(\sum_{i}\left|\partial_{i}\right|^{2}\right)$

Dynamic programming

Solve iteratively: $t=0,1, \ldots \quad$ BUT exponential complexity: $2^{\left|\partial_{i}\right|}$

- For binary $J_{i j}= \pm J: \mathcal{O}\left(\sum_{i} 2^{\left|\partial_{i}\right|}\right) \quad \Rightarrow \quad \mathcal{O}\left(\sum_{i}\left|\partial_{i}\right|^{2}\right)$
via Dynamic programming

Dynamic programming

Solve iteratively: $t=0,1, \ldots \quad$ BUT exponential complexity: $2^{\left|\partial_{i}\right|}$

- For binary $J_{i j}= \pm J: \mathcal{O}\left(\sum_{i} 2^{\left|\partial_{i}\right|}\right) \quad \Rightarrow \mathcal{O}\left(\sum_{i}\left|\partial_{i}\right|^{2}\right)$
via Dynamic programming
[Torrisi, AA, Kühn, PRE (2021)]
https://github.com/g-torr/

Dynamic programming

Solve iteratively：$t=0,1, \ldots \quad$ BUT exponential complexity： $2^{\left|\partial_{i}\right|}$
－For binary $J_{i j}= \pm J: \mathcal{O}\left(\sum_{i} 2^{\left|\partial_{i}\right|}\right) \quad \Rightarrow \mathcal{O}\left(\sum_{i}\left|\partial_{i}\right|^{2}\right)$
via Dynamic programming
［Torrisi，AA，Kühn，PRE（2021）］
https：／／github．com／g－torr／
－Power－law：$p(k) \sim \gamma k^{-\gamma-1}, \gamma=2.81 ; N=2 \cdot 10^{5}, k_{\max }=800$

Dynamic programming

Solve iteratively：$t=0,1, \ldots \quad$ BUT exponential complexity： $2^{\left|\partial_{i}\right|}$
－For binary $J_{i j}= \pm J: \mathcal{O}\left(\sum_{i} 2^{\left|\partial_{i}\right|}\right) \quad \Rightarrow \mathcal{O}\left(\sum_{i}\left|\partial_{i}\right|^{2}\right)$
via Dynamic programming
［Torrisi，AA，Kühn，PRE（2021）］
https：／／github．com／g－torr／
－Power－law：$p(k) \sim \gamma k^{-\gamma-1}, \gamma=2.81 ; N=2 \cdot 10^{5}, k_{\max }=800$

Dynamic programming

Solve iteratively: $t=0,1, \ldots \quad$ BUT exponential complexity: $2^{\left|\partial_{i}\right|}$

- For binary $J_{i j}= \pm J: \mathcal{O}\left(\sum_{i} 2^{\left|\partial_{i}\right|}\right) \quad \Rightarrow \mathcal{O}\left(\sum_{i}\left|\partial_{i}\right|^{2}\right)$ via Dynamic programming
[Torrisi, AA, Kühn, PRE (2021)] https://github.com/g-torr/
- Power-law: $p(k) \sim \gamma k^{-\gamma-1}, \gamma=2.81 ; N=2 \cdot 10^{5}, k_{\max }=800$

Dynamics: $P_{i}(t)$ vs i, t

Dynamic programming

Solve iteratively: $t=0,1, \ldots$ BUT exponential complexity: $2^{\left|\partial_{i}\right|}$

- For binary $J_{i j}= \pm J: \mathcal{O}\left(\sum_{i} 2^{\left|\partial_{i}\right|}\right) \quad \Rightarrow \mathcal{O}\left(\sum_{i}\left|\partial_{i}\right|^{2}\right)$ via Dynamic programming
[Torrisi, AA, Kühn, PRE (2021)] https://github.com/g-torr/
- Power-law: $p(k) \sim \gamma k^{-\gamma-1}, \gamma=2.81 ; N=2 \cdot 10^{5}, k_{\max }=800$

Dynamics: $P_{i}(t)$ vs i, t

Stationarity: $\Pi(P)=N^{-1} \sum_{i} \delta\left(P-P_{i}\right)$

Results $P\left(J_{i j} \neq 0\right)=\eta \delta\left(J_{i j}-J\right)+(1-\eta) \delta\left(J_{i j}+J\right), \quad \eta=0.62$

Results $P\left(J_{i j} \neq 0\right)=\eta \delta\left(J_{i j}-J\right)+(1-\eta) \delta\left(J_{i j}+J\right), \quad \eta=0.62$

- Multimodal distribution \Rightarrow node heterogeneities

Results $P\left(J_{i j} \neq 0\right)=\eta \delta\left(J_{i j}-J\right)+(1-\eta) \delta\left(J_{i j}+J\right), \quad \eta=0.62$

- Multimodal distribution \Rightarrow node heterogeneities
- Let $k_{i}=1, \partial_{i}=\{j\}, P_{j}=P$:

$$
P_{i}=P \Phi_{T}(\pm J-\vartheta)+(1-P) \Phi_{T}(-\vartheta) \equiv \rho_{ \pm}(P)
$$

Results $P\left(J_{i j} \neq 0\right)=\eta \delta\left(J_{i j}-J\right)+(1-\eta) \delta\left(J_{i j}+J\right), \quad \eta=0.62$

- Multimodal distribution \Rightarrow node heterogeneities
- Let $k_{i}=1, \partial_{i}=\{j\}, P_{j}=P$:

$$
P_{i}=P \Phi_{T}(\pm J-\vartheta)+(1-P) \Phi_{T}(-\vartheta) \equiv \rho_{ \pm}(P)
$$

Results $P\left(J_{i j} \neq 0\right)=\eta \delta\left(J_{i j}-J\right)+(1-\eta) \delta\left(J_{i j}+J\right), \quad \eta=0.62$

- Multimodal distribution \Rightarrow node heterogeneities
- Let $k_{i}=1, \partial_{i}=\{j\}, P_{j}=P$:

$$
P_{i}=P \Phi_{T}(\pm J-\vartheta)+(1-P) \Phi_{T}(-\vartheta) \equiv \rho_{ \pm}(P)
$$

e.g. in FM chains $P_{i+1}=\rho_{+}\left(P_{i}\right) \quad \Rightarrow p^{*}=\rho_{+}\left(p^{*}\right)$

Results $P\left(J_{i j} \neq 0\right)=\eta \delta\left(J_{i j}-J\right)+(1-\eta) \delta\left(J_{i j}+J\right), \quad \eta=0.62$

- Multimodal distribution \Rightarrow node heterogeneities
- Let $k_{i}=1, \partial_{i}=\{j\}, P_{j}=P$:

$$
P_{i}=P \Phi_{T}(\pm J-\vartheta)+(1-P) \Phi_{T}(-\vartheta) \equiv \rho_{ \pm}(P)
$$

e.g. in FM chains $P_{i+1}=\rho_{+}\left(P_{i}\right) \quad \Rightarrow p^{*}=\rho_{+}\left(p^{*}\right)$

Note: in fully asymmetric nets only one attractor

Results $P\left(J_{i j} \neq 0\right)=\eta \delta\left(J_{i j}-J\right)+(1-\eta) \delta\left(J_{i j}+J\right), \quad \eta=0.62$

- Multimodal distribution \Rightarrow node heterogeneities
- Let $k_{i}=1, \partial_{i}=\{j\}, P_{j}=P$:

$$
P_{i}=P \Phi_{T}(\pm J-\vartheta)+(1-P) \Phi_{T}(-\vartheta) \equiv \rho_{ \pm}(P)
$$

e.g. in FM chains $P_{i+1}=\rho_{+}\left(P_{i}\right) \quad \Rightarrow p^{*}=\rho_{+}\left(p^{*}\right)$

Note: in fully asymmetric nets only one attractor [Torrisi, AA, Kühn, PRE (2021)]

Outline

（1）Motivation
（2）Model inspired by neural networks
－Model definition
－Results
（3）Introducing TFs：a bipartite graph model
－Model definition
－Percolation theory
－Dynamics
－One－time approximation
－Extensions：Multi－node and self－interactions

One-time approximation

With bi-directional links $\quad P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}, t\right) \neq \prod_{j \in \partial_{i}} P^{(i)}\left(n_{j}, t\right) \quad$ BUT

One-time approximation

With bi-directional links $\quad P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}, t\right) \neq \prod_{j \in \partial_{i}} P^{(i)}\left(n_{j}, t\right) \quad$ BUT

$$
P^{(i)}\left(\mathbf{n}_{\partial i}^{00 \ldots T} \mid n_{i}^{0 \ldots T}\right)=\prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}^{0 \ldots T} \mid n_{i}^{0 \ldots T}\right)
$$

One-time approximation

With bi-directional links $\quad P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}, t\right) \neq \prod_{j \in \partial_{i}} P^{(i)}\left(n_{j}, t\right) \quad$ BUT

$$
P^{(i)}\left(\mathbf{n}_{\partial i}^{0 \ldots T} \mid n_{i}^{0 \ldots T}\right)=\prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}^{0 \ldots T} \mid n_{i}^{0 \ldots T}\right)
$$

Have to work with trajectories

$$
P_{i}\left(n_{i}^{0, \ldots, t}\right)=\sum_{n_{\partial_{i}}^{00} T}(\ldots) \prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}^{0 \ldots T} \mid n_{i}^{0 \ldots T}\right)
$$

One-time approximation

With bi-directional links $P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}, t\right) \neq \prod_{j \in \partial_{i}} P^{(i)}\left(n_{j}, t\right) \quad$ BUT

$$
P^{(i)}\left(\mathbf{n}_{\partial i}^{0 \ldots T} \mid n_{i}^{0 \ldots T}\right)=\prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}^{0 \ldots T} \mid n_{i}^{0 \ldots T}\right)
$$

Have to work with trajectories

$$
P_{i}\left(n_{i}^{0, \ldots, t}\right)=\sum_{n_{\partial_{i}}^{00 .}}(\ldots) \prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}^{0 \ldots T} \mid n_{i}^{0 \ldots T}\right)
$$

Additional complexity in time.. One-time step approximation [Neri Bollé 2009]

$$
P^{(i)}\left(n_{j}^{0 \ldots T} \mid n_{i}^{0 \ldots T}\right) \simeq P_{j}^{(i)}\left(n_{j}^{0}\right) \prod_{s=1}^{t} P_{j}^{(i)}\left(n_{j}^{s} \mid n_{i}^{s-1}\right)
$$

One-time approximation

With bi-directional links $\quad P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}, t\right) \neq \prod_{j \in \partial_{i}} P^{(i)}\left(n_{j}, t\right) \quad$ BUT

$$
P^{(i)}\left(\mathbf{n}_{\partial i}^{0 \ldots T} \mid n_{i}^{0 \ldots T}\right)=\prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}^{0 \ldots T} \mid n_{i}^{0 \ldots T}\right)
$$

Have to work with trajectories

$$
P_{i}\left(n_{i}^{0, \ldots, t}\right)=\sum_{n_{\partial_{i}}^{00 .}}(\ldots) \prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}^{0 \ldots T} \mid n_{i}^{0 \ldots T}\right)
$$

Additional complexity in time.. One-time step approximation [Neri Bollé 2009]

$$
P^{(i)}\left(n_{j}^{0 \ldots T} \mid n_{i}^{0 \ldots T}\right) \simeq P_{j}^{(i)}\left(n_{j}^{0}\right) \prod_{s=1}^{t} P_{j}^{(i)}\left(n_{j}^{s} \mid n_{i}^{s-1}\right)
$$

\Rightarrow recursion for cavity marginals $P_{i}^{(\ell)}\left(n_{i}^{t} \mid n_{\ell}^{t-1}\right)$ in terms of $P_{j}^{(i)}\left(n_{j}^{t-1} \mid n_{i}^{t-2}\right)$

One-time approximation

With bi-directional links $\quad P^{(i)}\left(\boldsymbol{n}_{\partial_{i}}, t\right) \neq \prod_{j \in \partial_{i}} P^{(i)}\left(n_{j}, t\right) \quad$ BUT

$$
P^{(i)}\left(\mathbf{n}_{\partial i}^{0 \ldots T} \mid n_{i}^{0 \ldots T}\right)=\prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}^{0 \ldots T} \mid n_{i}^{0 \ldots T}\right)
$$

Have to work with trajectories

$$
P_{i}\left(n_{i}^{0, \ldots, t}\right)=\sum_{n_{\partial_{i}}^{00 .}}(\ldots) \prod_{j \in \partial_{i}} P_{j}^{(i)}\left(n_{j}^{0 \ldots T} \mid n_{i}^{0 \ldots T}\right)
$$

Additional complexity in time.. One-time step approximation [Neri Bollé 2009]

$$
P^{(i)}\left(n_{j}^{0 \ldots T} \mid n_{i}^{0 \ldots T}\right) \simeq P_{j}^{(i)}\left(n_{j}^{0}\right) \prod_{s=1}^{t} P_{j}^{(i)}\left(n_{j}^{s} \mid n_{i}^{s-1}\right)
$$

\Rightarrow recursion for cavity marginals $P_{i}^{(\ell)}\left(n_{i}^{t} \mid n_{\ell}^{t-1}\right)$ in terms of $P_{j}^{(i)}\left(n_{j}^{t-1} \mid n_{i}^{t-2}\right)$
Similar equation for $P_{i}\left(n_{i}^{t}\right)$.. Both benefit from dynamic programming!

Symmetry breaking

Consider (i) $J_{i j}=J_{j i}$; (ii) $J_{i j}=-J_{j i}$; (iii) $P\left(J_{i j}, J_{j i}\right)=P\left(J_{i j}\right) P\left(J_{j i}\right)$

Symmetry breaking

Consider (i) $J_{i j}=J_{j i}$; (ii) $J_{i j}=-J_{j i}$; (iii) $P\left(J_{i j}, J_{j i}\right)=P\left(J_{i j}\right) P\left(J_{j i}\right)$

Symmetry breaking

Consider (i) $J_{i j}=J_{j i}$; (ii) $J_{i j}=-J_{j i}$; (iii) $P\left(J_{i j}, J_{j i}\right)=P\left(J_{i j}\right) P\left(J_{j i}\right)$

Symmetry breaking

Consider (i) $J_{i j}=J_{j i}$; (ii) $J_{i j}=-J_{j i}$; (iii) $P\left(J_{i j}, J_{j i}\right)=P\left(J_{i j}\right) P\left(J_{j i}\right)$

$$
\begin{aligned}
& \langle P\rangle=N^{-1} \sum_{i} P_{i} \\
& \theta=0 \\
& \left\langle J_{i j}\right\rangle=0
\end{aligned}
$$

Symmetry breaking

Consider (i) $J_{i j}=J_{j i}$; (ii) $J_{i j}=-J_{j i}$; (iii) $P\left(J_{i j}, J_{j i}\right)=P\left(J_{i j}\right) P\left(J_{j i}\right)$

$$
\begin{aligned}
& \langle P\rangle=N^{-1} \sum_{i} P_{i} \\
& \theta=0 \\
& \left\langle J_{i j}\right\rangle=0
\end{aligned}
$$

Symmetry breaking

Consider (i) $J_{i j}=J_{j i}$; (ii) $J_{i j}=-J_{j i}$; (iii) $P\left(J_{i j}, J_{j i}\right)=P\left(J_{i j}\right) P\left(J_{j i}\right)$

$$
\begin{aligned}
& \langle P\rangle=N^{-1} \sum_{i} P_{i} \\
& \theta=0 \\
& \left\langle J_{i j}\right\rangle=0
\end{aligned}
$$

\Rightarrow bias towards activation or quiescence \Rightarrow Symmetry breaking
[G Torrisi, R Kühn, AA, JSTAT (2022)]

Outline

(1) Motivation
(2) Model inspired by neural networks

- Model definition
- Results
(3) Introducing TFs: a bipartite graph model
- Model definition
- Percolation theory
- Dynamics
- One-time approximation
- Extensions: Multi-node and self-interactions

Extensions: Multi-node and self-interactions

Extensions: Multi-node and self-interactions

Extensions: Multi-node and self-interactions

- Bi-directional links in bipartite graphs:

$$
P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right)=p
$$

Extensions: Multi-node and self-interactions

- Bi-directional links in bipartite graphs: $P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right)=p$

Extensions: Multi-node and self-interactions

- Bi-directional links in bipartite graphs: $P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right)=p$

Extensions: Multi-node and self-interactions

- Bi-directional links in bipartite graphs: $P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right)=p$

- OR: $n_{i}(t+1)=\Theta\left[\sum_{j} J_{i j} n_{j}(t)-\vartheta_{i}-z_{i}(t)\right], \quad J_{i i} \neq 0$

Extensions: Multi-node and self-interactions

- Bi-directional links in bipartite graphs: $P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right)=p$

- OR: $n_{i}(t+1)=\Theta\left[\sum_{j} J_{i j} n_{j}(t)-\vartheta_{i}-z_{i}(t)\right], \quad J_{i i} \neq 0$

Extensions: Multi-node and self-interactions

- Bi-directional links in bipartite graphs: $P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right)=p$

- OR: $n_{i}(t+1)=\Theta\left[\sum_{j} J_{i j} n_{j}(t)-\vartheta_{i}-z_{i}(t)\right], \quad J_{i i} \neq 0 \quad \mathbf{X}$

Extensions: Multi-node and self-interactions

- Bi-directional links in bipartite graphs: $P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right)=p$

- OR: $n_{i}(t+1)=\Theta\left[\sum_{j} J_{i j} n_{j}(t)-\vartheta_{i}-z_{i}(t)\right], \quad J_{i i} \neq 0 \quad \mathbf{X}$

Extensions: Multi-node and self-interactions

- Bi-directional links in bipartite graphs:

$$
P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right)=p
$$

- OR: $n_{i}(t+1)=\Theta\left[\sum_{j} J_{i j} n_{j}(t)-\vartheta_{i}-z_{i}(t)\right], \quad J_{i i} \neq 0 \quad \mathbf{X}$

Map: N nodes and self-interactions $\Rightarrow 2 N$ and bi-directional links

Extensions: Multi-node and self-interactions

- Bi-directional links in bipartite graphs:

$$
P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right)=p
$$

- OR: $n_{i}(t+1)=\Theta\left[\sum_{j} J_{i j} n_{j}(t)-\vartheta_{i}-z_{i}(t)\right], \quad J_{i i} \neq 0 \quad \mathbf{X}$

Map: N nodes and self-interactions $\Rightarrow 2 N$ and bi-directional links
... evolving according to linear threshold model

Extensions: Multi-node and self-interactions

- Bi-directional links in bipartite graphs:

$$
P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right)=p
$$

- OR: $n_{i}(t+1)=\Theta\left[\sum_{j} J_{i j} n_{j}(t)-\vartheta_{i}-z_{i}(t)\right], \quad J_{i i} \neq 0 \quad \mathbf{X}$

Map: N nodes and self-interactions $\Rightarrow 2 N$ and bi-directional links
... evolving according to linear threshold model

- AND: $\tau_{\mu}(t)=\prod_{j: \eta_{j}^{\mu}=1} n_{j}(t) \Rightarrow \tau_{\mu}(t)=\Theta\left[\sum_{j} \eta_{j}^{\mu} n_{j}(t)-c_{\mu}+\epsilon\right]$

Extensions: Multi-node and self-interactions

- Bi-directional links in bipartite graphs:

$$
P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right)=p
$$

- OR: $n_{i}(t+1)=\Theta\left[\sum_{j} J_{i j} n_{j}(t)-\vartheta_{i}-z_{i}(t)\right], \quad J_{i i} \neq 0 \quad \mathbf{X}$

Map: N nodes and self-interactions $\Rightarrow 2 N$ and bi-directional links
... evolving according to linear threshold model

- AND: $\tau_{\mu}(t)=\prod_{j: \eta_{j}^{\mu}=1} n_{j}(t) \Rightarrow \tau_{\mu}(t)=\Theta\left[\sum_{j} \eta_{j}^{\mu} n_{j}(t)-c_{\mu}+\epsilon\right]$

Extensions: Multi-node and self-interactions

- Bi-directional links in bipartite graphs:

$$
P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right)=p
$$

- OR: $n_{i}(t+1)=\Theta\left[\sum_{j} J_{i j} n_{j}(t)-\vartheta_{i}-z_{i}(t)\right], \quad J_{i i} \neq 0 \quad \mathbf{X}$

Map: N nodes and self-interactions $\Rightarrow 2 N$ and bi-directional links
... evolving according to linear threshold model

- AND: $\tau_{\mu}(t)=\prod_{j: \eta_{j}^{\mu}=1} n_{j}(t) \Rightarrow \tau_{\mu}(t)=\Theta\left[\sum_{j} \eta_{j}^{\mu} n_{j}(t)-c_{\mu}+\epsilon\right]$
$N+P$ nodes, bi-directional links, linear threshold model

Extensions: Multi-node and self-interactions

- $p=P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right) \Rightarrow$ at low T multiplicity of attractors

Extensions: Multi-node and self-interactions

- $p=P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right) \Rightarrow$ at low T multiplicity of attractors
- Similarity of attractors: AND (left), OR (right)

Extensions: Multi-node and self-interactions

- $p=P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right) \Rightarrow$ at low T multiplicity of attractors
- Similarity of attractors: AND (left), OR (right)

Extensions: Multi-node and self-interactions

- $p=P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right) \Rightarrow$ at low T multiplicity of attractors
- Similarity of attractors: AND (left), OR (right)

Self-regulation crucial for multiplicity of attractors

Extensions: Multi-node and self-interactions

- $p=P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right) \Rightarrow$ at low T multiplicity of attractors
- Similarity of attractors: AND (left), OR (right)

Self-regulation crucial for multiplicity of attractors
Cooperativity promotes diversity

Extensions: Multi-node and self-interactions

- $p=P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right) \Rightarrow$ at low T multiplicity of attractors
- Similarity of attractors: AND (left), OR (right)

Self-regulation crucial for multiplicity of attractors
Cooperativity promotes diversity
Both common features of GRNs \Rightarrow Sustain multi-cellular life?

Extensions: Multi-node and self-interactions

- $p=P\left(\xi_{i}^{\mu} \neq 0 \mid \eta_{i}^{\mu}=1\right) \Rightarrow$ at low T multiplicity of attractors
- Similarity of attractors: AND (left), OR (right)

Self-regulation crucial for multiplicity of attractors
Cooperativity promotes diversity
Both common features of GRNs \Rightarrow Sustain multi-cellular life?
[Hurry, Mozeika, AA, JPA (2022)]

Discussion

－Constructed a minimal model with hierarchically organized cell cycles inspired by Neural Networks

Discussion

- Constructed a minimal model with hierarchically organized cell cycles inspired by Neural Networks
- Investigated reprogramming:

Discussion

- Constructed a minimal model with hierarchically organized cell cycles inspired by Neural Networks
- Investigated reprogramming:
- Takes several cycles

Discussion

- Constructed a minimal model with hierarchically organized cell cycles inspired by Neural Networks
- Investigated reprogramming:
- Takes several cycles
- Can be achieved with realistic numbers of TFs

Discussion

- Constructed a minimal model with hierarchically organized cell cycles inspired by Neural Networks
- Investigated reprogramming:
- Takes several cycles
- Can be achieved with realistic numbers of TFs
- Bipartite models

Discussion

- Constructed a minimal model with hierarchically organized cell cycles inspired by Neural Networks
- Investigated reprogramming:
- Takes several cycles
- Can be achieved with realistic numbers of TFs
- Bipartite models
- Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes

Discussion

- Constructed a minimal model with hierarchically organized cell cycles inspired by Neural Networks
- Investigated reprogramming:
- Takes several cycles
- Can be achieved with realistic numbers of TFs
- Bipartite models
- Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes
- Dynamics: efficient algorithm based on dynamic programming to calculate gene expression profile

Discussion

- Constructed a minimal model with hierarchically organized cell cycles inspired by Neural Networks
- Investigated reprogramming:
- Takes several cycles
- Can be achieved with realistic numbers of TFs
- Bipartite models
- Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes
- Dynamics: efficient algorithm based on dynamic programming to calculate gene expression profile
- for fully asymmetric networks, distribution of node activation has rich structure; Salient features rationalised in terms of discrete stochastic maps

Discussion

- Constructed a minimal model with hierarchically organized cell cycles inspired by Neural Networks
- Investigated reprogramming:
- Takes several cycles
- Can be achieved with realistic numbers of TFs
- Bipartite models
- Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes
- Dynamics: efficient algorithm based on dynamic programming to calculate gene expression profile
- for fully asymmetric networks, distribution of node activation has rich structure; Salient features rationalised in terms of discrete stochastic maps
- extensions to bi-directional links via OTA

Discussion

- Constructed a minimal model with hierarchically organized cell cycles inspired by Neural Networks
- Investigated reprogramming:
- Takes several cycles
- Can be achieved with realistic numbers of TFs
- Bipartite models
- Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes
- Dynamics: efficient algorithm based on dynamic programming to calculate gene expression profile
- for fully asymmetric networks, distribution of node activation has rich structure; Salient features rationalised in terms of discrete stochastic maps
- extensions to bi-directional links via OTA
- Unbiased interactions can sustain activation or quiescence

Discussion

- Constructed a minimal model with hierarchically organized cell cycles inspired by Neural Networks
- Investigated reprogramming:
- Takes several cycles
- Can be achieved with realistic numbers of TFs
- Bipartite models
- Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes
- Dynamics: efficient algorithm based on dynamic programming to calculate gene expression profile
- for fully asymmetric networks, distribution of node activation has rich structure; Salient features rationalised in terms of discrete stochastic maps
- extensions to bi-directional links via OTA
- Unbiased interactions can sustain activation or quiescence
- Extensions to multi-node \& self-interactions

Discussion

- Constructed a minimal model with hierarchically organized cell cycles inspired by Neural Networks
- Investigated reprogramming:
- Takes several cycles
- Can be achieved with realistic numbers of TFs
- Bipartite models
- Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes
- Dynamics: efficient algorithm based on dynamic programming to calculate gene expression profile
- for fully asymmetric networks, distribution of node activation has rich structure; Salient features rationalised in terms of discrete stochastic maps
- extensions to bi-directional links via OTA
- Unbiased interactions can sustain activation or quiescence
- Extensions to multi-node \& self-interactions
- Multiplicity of attractors at low T

Discussion

- Constructed a minimal model with hierarchically organized cell cycles inspired by Neural Networks
- Investigated reprogramming:
- Takes several cycles
- Can be achieved with realistic numbers of TFs
- Bipartite models
- Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes
- Dynamics: efficient algorithm based on dynamic programming to calculate gene expression profile
- for fully asymmetric networks, distribution of node activation has rich structure; Salient features rationalised in terms of discrete stochastic maps
- extensions to bi-directional links via OTA
- Unbiased interactions can sustain activation or quiescence
- Extensions to multi-node \& self-interactions
- Multiplicity of attractors at low T
- Multi-node interactions favour diversity of attractors

Discussion

- Constructed a minimal model with hierarchically organized cell cycles inspired by Neural Networks
- Investigated reprogramming:
- Takes several cycles
- Can be achieved with realistic numbers of TFs
- Bipartite models
- Percolation: for a cell to exist, TFs typically small protein complexes that regulate many genes
- Dynamics: efficient algorithm based on dynamic programming to calculate gene expression profile
- for fully asymmetric networks, distribution of node activation has rich structure; Salient features rationalised in terms of discrete stochastic maps
- extensions to bi-directional links via OTA
- Unbiased interactions can sustain activation or quiescence
- Extensions to multi-node \& self-interactions
- Multiplicity of attractors at low T
- Multi-node interactions favour diversity of attractors
- Still many unanswered questions... the fight Maths vs GRNs continues!

Acknowledgement

Acknowledgement

PhD Students

Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Acknowledgement

PhD Students

Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators

Elena Agliari (Sapienza, Rome) Adriano Barra (Unisalento, Lecce) Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Acknowledgement

PhD Students

Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators

Elena Agliari (Sapienza, Rome) Adriano Barra (Unisalento, Lecce) Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Acknowledgement

PhD Students
Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators

Elena Agliari (Sapienza, Rome) Adriano Barra (Unisalento, Lecce) Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Many thanks Reimer!

Acknowledgement

PhD Students
Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators

Elena Agliari (Sapienza, Rome)
Adriano Barra (Unisalento, Lecce)
Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Many thanks Reimer!

Many thanks for listening!

Acknowledgement

PhD Students
Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators

Elena Agliari (Sapienza, Rome)
Adriano Barra (Unisalento, Lecce)
Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Many thanks Reimer!

Many thanks for listening!

Acknowledgement

PhD Students
Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators

Elena Agliari (Sapienza, Rome)
Adriano Barra (Unisalento, Lecce)
Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Many thanks Reimer!

Many thanks for listening!

Acknowledgement

PhD Students
Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators

Elena Agliari (Sapienza, Rome)
Adriano Barra (Unisalento, Lecce)
Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Many thanks Reimer!

Many thanks for listening!

Acknowledgement

PhD Students
Ryan Hannam
Giuseppe Torrisi
Christian Hurry

Collaborators

Elena Agliari (Sapienza, Rome)
Adriano Barra (Unisalento, Lecce)
Anthony Coolen (Radboud, Nijmegen)
Reimer Kühn (KCL, London)
Alexander Mozeika (KCL, London)
Peter Sollich (ITP, Göttingen)
Daniele Tantari (Università di Bologna)

Many thanks Reimer!

Many thanks for listening!

Dynamic programming

$$
P_{i}(t+1)=\left\langle\Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right)\right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)=\sum_{j} J_{i j} n_{j}
$$

- Let $\partial_{i}=\left\{1, \ldots, k_{i}\right\}$ and def. average over subset of nodes

$$
\begin{aligned}
f_{i}(\ell, \tilde{h}) & =\left\langle\Phi_{T}\left(\tilde{h}+\sum_{j=\ell}^{k_{i}} J_{i j} n_{j}-\vartheta_{i}\right)\right\rangle_{n_{\ell, \ldots, k_{i}}, t} \Rightarrow P_{i}(t+1)=f_{i}(1,0) \\
\tilde{h} & =\text { auxiliary field }
\end{aligned}
$$

Dynamic programming

$$
P_{i}(t+1)=\left\langle\Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right)\right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)=\sum_{j} J_{i j} n_{j}
$$

- Let $\partial_{i}=\left\{1, \ldots, k_{i}\right\}$ and def. average over subset of nodes

$$
\begin{aligned}
f_{i}(\ell, \tilde{h}) & =\left\langle\Phi_{T}\left(\tilde{h}+\sum_{j=\ell}^{k_{i}} J_{i j} n_{j}-\vartheta_{i}\right)\right\rangle_{n_{\ell, \ldots, k_{i}}, t} \Rightarrow P_{i}(t+1)=f_{i}(1,0) \\
\tilde{h} & =\text { auxiliary field }
\end{aligned}
$$

Dynamic programming

$$
P_{i}(t+1)=\left\langle\Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right)\right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)=\sum_{j} J_{i j} n_{j}
$$

- Let $\partial_{i}=\left\{1, \ldots, k_{i}\right\}$ and def. average over subset of nodes

$$
\begin{aligned}
f_{i}(\ell, \tilde{h}) & =\left\langle\Phi_{T}\left(\tilde{h}+\sum_{j=\ell}^{k_{i}} J_{i j} n_{j}-\vartheta_{i}\right)\right\rangle_{n_{\ell, \ldots, k_{i}}, t} \Rightarrow P_{i}(t+1)=f_{i}(1,0) \\
\tilde{h} & =\text { auxiliary field }
\end{aligned}
$$

$f_{i}(\ell, \tilde{h})$ obtained from backward recursion

$$
f_{i}(\ell, \tilde{h})=P_{\ell}(t) f_{i}\left(\ell+1, \tilde{h}+J_{i \ell}\right)+\left(1-P_{\ell}(t)\right) f_{i}(\ell+1, \tilde{h})
$$

Dynamic programming

$$
P_{i}(t+1)=\left\langle\Phi_{T}\left(h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)-\vartheta_{i}\right)\right\rangle_{\boldsymbol{n}_{\partial_{i}}, t} \quad h_{i}\left(\boldsymbol{n}_{\partial_{i}}\right)=\sum_{j} J_{i j} n_{j}
$$

- Let $\partial_{i}=\left\{1, \ldots, k_{i}\right\}$ and def. average over subset of nodes

$$
\begin{aligned}
f_{i}(\ell, \tilde{h}) & =\left\langle\Phi_{T}\left(\tilde{h}+\sum_{j=\ell}^{k_{i}} J_{i j} n_{j}-\vartheta_{i}\right)\right\rangle_{n_{\ell, \ldots, k_{i}, t}} \Rightarrow P_{i}(t+1)=f_{i}(1,0) \\
\tilde{h} & =\text { auxiliary field }
\end{aligned}
$$

$f_{i}(\ell, \tilde{h})$ obtained from backward recursion

$$
f_{i}(\ell, \tilde{h})=P_{\ell}(t) f_{i}\left(\ell+1, \tilde{h}+J_{i \ell}\right)+\left(1-P_{\ell}(t)\right) f_{i}(\ell+1, \tilde{h})
$$

with terminal boundary condition $f_{i}\left(k_{i}+1, \tilde{h}\right)=\Phi_{T}\left(\tilde{h}-\vartheta_{i}\right)$

Dynamic programming [Torrisi, AA, Kühn, PRE (2021)]

For $J_{i j} \in\{0, \pm J\}$:
at each $\ell, f_{i}(\ell, \tilde{h})$ requires $f_{i}(\ell+1, \tilde{h})$ and $f_{i}(\ell+1, \tilde{h} \pm J)$

Dynamic programming [Torrisi, AA, Kühn, PRE (2021)]

For $J_{i j} \in\{0, \pm J\}$:
at each $\ell, f_{i}(\ell, \tilde{h})$ requires $f_{i}(\ell+1, \tilde{h})$ and $f_{i}(\ell+1, \tilde{h} \pm J)$
\Rightarrow evaluation of $f_{i}(\ell, \tilde{h})$ only required on discrete grid

Dynamic programming［Torris，AA，Kühn，PRE（2021）］

For $J_{i j} \in\{0, \pm J\}$ ：
at each $\ell, f_{i}(\ell, \tilde{h})$ requires $f_{i}(\ell+1, \tilde{h})$ and $f_{i}(\ell+1, \tilde{h} \pm J)$
\Rightarrow evaluation of $f_{i}(\ell, \tilde{h})$ only required on discrete grid

Dynamic programming［Torris，AA，Kühn，PRE（2021）］

For $J_{i j} \in\{0, \pm J\}$ ：
at each $\ell, f_{i}(\ell, \tilde{h})$ requires $f_{i}(\ell+1, \tilde{h})$ and $f_{i}(\ell+1, \tilde{h} \pm J)$
\Rightarrow evaluation of $f_{i}(\ell, \tilde{h})$ only required on discrete grid

$$
\begin{aligned}
& k_{i}=3, \quad \partial_{i}=\{1,2,3\} \\
& J_{i 1}=+J ; \quad J_{i 2}=-J ; \quad J_{i 3}=+J
\end{aligned}
$$

Dynamic programming［Torris，AA，Kühn，PRE（2021）］

For $J_{i j} \in\{0, \pm J\}$ ：
at each $\ell, f_{i}(\ell, \tilde{h})$ requires $f_{i}(\ell+1, \tilde{h})$ and $f_{i}(\ell+1, \tilde{h} \pm J)$
\Rightarrow evaluation of $f_{i}(\ell, \tilde{h})$ only required on discrete grid

$$
\begin{aligned}
& k_{i}=3, \quad \partial_{i}=\{1,2,3\} \\
& J_{i 1}=+J ; \quad J_{i 2}=-J ; \quad J_{i 3}=+J
\end{aligned}
$$

Dynamic programming [Torrisi, AA, Kühn, PRE (2021)]

For $J_{i j} \in\{0, \pm J\}$:
at each $\ell, f_{i}(\ell, \tilde{h})$ requires $f_{i}(\ell+1, \tilde{h})$ and $f_{i}(\ell+1, \tilde{h} \pm J)$
\Rightarrow evaluation of $f_{i}(\ell, \tilde{h})$ only required on discrete grid

$$
\begin{aligned}
& k_{i}=3, \quad \partial_{i}=\{1,2,3\} \\
& J_{i 1}=+J ; \quad J_{i 2}=-J ; \quad J_{i 3}=+J
\end{aligned}
$$

$$
\text { Nr eval. }=\sum_{\ell=1}^{k_{i}+1} \ell=\left(k_{i}+1\right)\left(k_{i}+2\right) / 2 \quad \forall i
$$

Dynamic programming [Torrisi, AA, Kühn, PRE (2021)]

For $J_{i j} \in\{0, \pm J\}$:
at each $\ell, f_{i}(\ell, \tilde{h})$ requires $f_{i}(\ell+1, \tilde{h})$ and $f_{i}(\ell+1, \tilde{h} \pm J)$
\Rightarrow evaluation of $f_{i}(\ell, \tilde{h})$ only required on discrete grid

$$
\begin{aligned}
& k_{i}=3, \quad \partial_{i}=\{1,2,3\} \\
& J_{i 1}=+J ; \quad J_{i 2}=-J ; \quad J_{i 3}=+J
\end{aligned}
$$

$$
\text { Nr eval. }=\sum_{\ell=1}^{k_{i}+1} \ell=\left(k_{i}+1\right)\left(k_{i}+2\right) / 2 \quad \forall i
$$

Complexity $\mathcal{O}\left(\sum_{i} 2^{k_{i}}\right) \quad \Rightarrow \mathcal{O}\left(\sum_{i} k_{i}^{2}\right)$

Dynamic programming [Torrisi, AA, Kühn, PRE (2021)]

For $J_{i j} \in\{0, \pm J\}$:
at each $\ell, f_{i}(\ell, \tilde{h})$ requires $f_{i}(\ell+1, \tilde{h})$ and $f_{i}(\ell+1, \tilde{h} \pm J)$
\Rightarrow evaluation of $f_{i}(\ell, \tilde{h})$ only required on discrete grid

$$
\begin{aligned}
& k_{i}=3, \quad \partial_{i}=\{1,2,3\} \\
& J_{i 1}=+J ; \quad J_{i 2}=-J ; \quad J_{i 3}=+J
\end{aligned}
$$

$$
\text { Nr eval. }=\sum_{\ell=1}^{k_{i}+1} \ell=\left(k_{i}+1\right)\left(k_{i}+2\right) / 2 \quad \forall i
$$

Complexity $\mathcal{O}\left(\sum_{i} 2^{k_{i}}\right) \quad \Rightarrow \mathcal{O}\left(\sum_{i} k_{i}^{2}\right)$
Similar reduction for $J_{i j} \in\left\{-r_{i} J_{i}, \ldots,-J_{i}, 0, J_{i}, \ldots, s_{i} J_{i}\right\}$

[^0]: Source: ARK Investment Management LLC | ark-invest.com

[^1]: Source: ARK Investment Management LLC | ark-invest.com

