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Induced pluripotent stem cells

PR ) @ Adult bone marrow, ski
cord blood, deciduous teeth

Nobel prize 2012 for Physiology or
Medicine

O(10) days to reprogram
many cells take 'bad trajectories’
after reprogramming.. e.g. cancer

Q: How to control cell fate?

huge dim: 'on/off’ genes = 225:000

possible gene patterns

Striking that we only have ~ 300
cell types..

Idea: cell types are attractors of
gene dynamics, like memories for
neural dynamics..
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Nature of cellular attractors

o cell types are hierarchically organized

@ dynamical entities i.e. they cycle (Gi—>S—Gs— M —=G;...)
= Choose J;; to encode hierarchically organized cycles

Stem cell

o p=cell-cycle stage € {1...C}

@ 1 = somatic cell type € {1... M}

o 0. n"e€{0,1}: gene i in given cell type

,-,p-,l ”lp'z nPH
corresponding p-phase progeny & p h ase
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Inspiration from neural networks

@ Sequences of patterns: 51 — 52 — ...EP [Sompolinsky, Kanter (1986)]
1L
_ +1 L ePHl _ 41
Jij = N;@“ & Cycles: g =¢

o Patterns hierarchically organized &7 — {€P*} — {{¢P**}}
ED

[Parga, Virasoro (1986); Krogh, Herz (1988)]

Euu/
< @ Markov process [defn as martingale]:
/‘\ /\\ /\ W(gltlmltkﬂ‘gul---uk)
E""}‘o ® ® @ [ ] [ J L) @

]

gpfp fpu gp)(fpu gp SP#/\ gpu)(gpuk gpu)
==

p—=1 92 — q1 il

= Combine and adapt to 0,1 variables.. (for a more general W)
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@ Results
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Dependence on noise level De-differentiation, T=0.14
My,
0.8 | 1
0.8
0.6 1
g i i .06
0.4 s 1 h
0.4
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0
0 0.1 0.2 0.3 0.4 0
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Note: de-differentiation takes O(10) cycles.

[R Hannam, AA, R Kiihn, J Phys A (2017)]
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stem cell

Correlations vs fraction ¢ of perturbed genes, T' = 0.01.
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Critical fraction of genes ¢, €[0.1,0.2] (\, when T" )

[R Hannam, AA, R Kiihn, J Phys A (2017)]
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N, ~0.1N ~ 2,500 = qr N, ~ 250 - 500 genes
Also:
@ each Yamanaka TF involved in regulating O(100) genes

= can perturb ¢, N, genes with O(3—5) TFs! (Yamanaka
territory!)

Q: Biological grounds for interactions?
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@ OR: TF ;1 'ON' if at least one contributing gene 'ON’
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@ asymmetric multi-node interactions (as opposed to pairwise)
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Percolation

Q: For which model’'s parameters can have non-trivial attractors?
A: Noisy finite systems are ergodic = Giant Component (GC) for
multiplicity of attractors = Percolation theory

AND:
- - | [ |
o GC stable if | (c")7¢ Pa(d" = 1) < 1| / N
= TFs should be small complexes n cout

e GC only stable solution if | a(c®")pp Prp(c® =1) > 1

= TFs should regulate sufficiently many genes

OR:

@ GC only stable option for a(cin>TF<c°“t>TF >1

TFs indeed small complexes which regulate many genes!

[Hannam, Kiihn, AA, JPA (2019); Torrisi, Kithn, AA, JSTAT (2020)]



© Introducing TFs: a bipartite graph model

@ Dynamics



@ Linear threshold model
mn; (t + 1) =0 [hl (nai (t)) — ’191 — Zz(t)] hi (nai (t)) :Z Ji]‘ n; (t)



@ Linear threshold model
mn; (t + 1) =0 [hl (nai (t)) — ’191 — Zz(t)] hi (nai (t)) :Z Ji]‘ n; (t)



@ Linear threshold model
mn; (t + 1) =0 [hl (nai (t)) — ’191 — Zz(t)] hi (nai (t)) :Z Ji]‘ n; (t)

i.l Jij .j



@ Linear threshold model
mn; (t + 1) =0 [hl (nai (t)) — ’191 — Zz(t)] hi (nai (t)) :Z Ji]‘ n; (t)

s ,
e o zi(t) random with Prob[z < z] = ®p(x)



@ Linear threshold model
mn; (t + 1) =0 [hl (nai (t)) — ’191 — Zz(t)] hi (nai (t)) :Z Ji]‘ n; (t)
'., Jij j J
| o zi(t) random with Prob[z < z] = ®p(x)
@ Interested in activation probability P;(t) = Prob(n;(t) = 1)

Pi(t +1) = (@1 (hi(no,) = Vi), (- Imot = ... P(ng,,1)



@ Linear threshold model
mn; (t + 1) =0 [hl (nai (t)) — ’191 — Zz(t)] hi (nai (t)) :Z Ji]‘ n; (t)
'., Jij j J
| o zi(t) random with Prob[z < z] = ®p(x)
@ Interested in activation probability P;(t) = Prob(n;(t) = 1)

Pi(t +1) = (@1 (hi(no,) = Vi), (- Imot = ... P(ng,,1)

@ Bethe lattice: Cavity method [Mezard & Parisi, (2001)]



@ Linear threshold model
mn; (t + 1) =0 [hl (nai (t)) — ’191 — Zz(t)] hi (nai (t)) :Z Ji]‘ n; (t)
'., Jij j J
| o zi(t) random with Prob[z < z] = ®p(x)
@ Interested in activation probability P;(t) = Prob(n;(t) = 1)

Pi(t +1) = (@1 (hi(no,) = Vi), (- Imot = ... P(ng,,1)

@ Bethe lattice: Cavity method [Mezard & Parisi, (2001)]



@ Linear threshold model
mn; (t + 1) =0 [hl (nai (t)) — ’191 — Zz(t)] hi (nai (t)) :Z Ji]‘ n; (t)
'., Jij j J
| o zi(t) random with Prob[z < z] = ®p(x)
@ Interested in activation probability P;(t) = Prob(n;(t) = 1)

Pi(t +1) = (@1 (hi(no,) = Vi), (- Imot = ... P(ng,,1)

@ Bethe lattice: Cavity method [Mezard & Parisi, (2001)]



@ Linear threshold model
mn; (t + 1) =0 [hl (nai (t)) — ’191 — Zz(t)] hi (nai (t)) :Z Ji]‘ n; (t)
'., Jij j J
| o zi(t) random with Prob[z < z] = ®p(x)
@ Interested in activation probability P;(t) = Prob(n;(t) = 1)

Pi(t +1) = (@1 (hi(no,) = Vi), (- Imot = ... P(ng,,1)

@ Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

i i _ (1)
§j P (ny,) = H P;7(ng)
J€O;



@ Linear threshold model
mn; (t + 1) =0 [hl (nai (t)) — ’191 — Zz(t)] hi (nai (t)) :Z Ji]‘ n; (t)
'., Jij j J
| o zi(t) random with Prob[z < z] = ®p(x)
@ Interested in activation probability P;(t) = Prob(n;(t) = 1)

Pi(t +1) = (@1 (hi(no,) = Vi), (- Imot = ... P(ng,,1)

@ Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

i i _ (1)
§j P (ny,) = H P;7(ng)
J€O;



@ Linear threshold model
mn; (t + 1) =0 [hl (nai (t)) — ’191 — Zz(t)] hi (nai (t)) :Z Ji]‘ n; (t)

s ,
e o zi(t) random with Prob[z < z] = ®p(x)

@ Interested in activation probability P;(t) = Prob(n;(t) = 1)
Pi(t +1) = (@1 (hi(no,) = Vi), (- Imot = ... P(ng,,1)
nH,

@ Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

i i _ (1)
§j P (ny,) = H P;7(ng)
J€O;

o Fully-asymmetric J;;.J;;=0 [Neri & Boll¢, JSTAT (2009)]



@ Linear threshold model
mn; (t + 1) =0 [hl (nai (t)) — ’191 — Zz(t)] hi (nai (t)) :Z Ji]‘ n; (t)

s ,
e o zi(t) random with Prob[z < z] = ®p(x)

@ Interested in activation probability P;(t) = Prob(n;(t) = 1)
Pi(t +1) = (@1 (hi(no,) = Vi), (- Imot = ... P(ng,,1)
nH,

@ Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

i i _ (1)
§j P (ny,) = H P;7(ng)
J€O;

o Fully-asymmetric J;;.J;;=0 [Neri & Boll¢, JSTAT (2009)]



@ Linear threshold model
mn; (t + 1) =0 [hl (nai (t)) — ’191 — Zz(t)] hi (nai (t)) :Z Ji]‘ n; (t)

s ,
e o zi(t) random with Prob[z < z] = ®p(x)

@ Interested in activation probability P;(t) = Prob(n;(t) = 1)
Pi(t +1) = (@1 (hi(no,) = Vi), (- Imot = ... P(ng,,1)
nH,

@ Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

i i _ (1)
§j P (ny,) = H P;7(ng)
J€O;

o Fully-asymmetric J;;.J;;=0 [Neri & Boll¢, JSTAT (2009)]

-



@ Linear threshold model
mn; (t + 1) =0 [hl (nai (t)) — ’191 — Zz(t)] hi (nai (t)) :Z Ji]‘ n; (t)
'., Jij j J
| o zi(t) random with Prob[z < z] = ®p(x)

@ Interested in activation probability P;(t) = Prob(n;(t) = 1)

Pi(t +1) = (@1 (hi(no,) = Vi), (- Imot = ... P(ng,,1)

@ Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

i i _ (1)
§j P (ny,) = H P;7(ng)
J€O;

o Fully-asymmetric J;;.J;;=0 [Neri & Boll¢, JSTAT (2009)]
P(nam t) = P(Z) (namt)

-



@ Linear threshold model
mn; (t + 1) =0 [hl (nai (t)) — ’191 — Zz(t)] hi (nai (t)) :Z Ji]‘ n; (t)
'., Jij j J
| o zi(t) random with Prob[z < z] = ®p(x)

@ Interested in activation probability P;(t) = Prob(n;(t) = 1)

Pi(t +1) = (@1 (hi(no,) = Vi), (- Imot = ... P(ng,,1)

@ Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

i i _ (1)
§j P (ny,) = H P;7(ng)
J€O;

o Fully-asymmetric J;;.J;;=0 [Neri & Boll¢, JSTAT (2009)]
P(nam t) = P(Z) (namt)

-



@ Linear threshold model

mn; (t + 1) =0 [hl (nai (t)) — ’191 — Zz(t)] hi (nai (t)) :Z Ji]‘ n; (t)
Lo zi(t) random with Prob[z < z] = ®p(x)
@ Interested in activation probability P;(t) = Prob(n;(t) = 1)
Pi(t +1) = (@1 (hi(no,) = Vi), (- Imot = ... P(ng,,1)

@ Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

i i _ (1)
§j P (ny,) = H P;7(ng)
J€O;

o Fully-asymmetric J;;.J;;=0 [Neri & Boll¢, JSTAT (2009)]

P(ng,,t) = P9 (ny, 1) HP n;,t)
JEO;

-



@ Linear threshold model

mn; (t + 1) =0 [hl (nai (t)) — ’191 — Zz(t)] hi (nai (t)) :Z Ji]‘ n; (t)
Lo zi(t) random with Prob[z < z] = ®p(x)

@ Interested in activation probability P;(t) = Prob(n;(t) = 1)
Pyt +1) = (@7 (hi(no,) = 0i))n, ¢ (- dnopt =D - Plna,b)

@ Bethe lattice: Cavity method [Mezard & Parisi, (2001)]

i i _ (1)
§j P (ny,) = H P;7(ng)
J€O;

o Fully-asymmetric J;;.J;;=0 [Neri & Boll¢, JSTAT (2009)]
P(ng,,t) = P9 (ny, 1) HP n;,t)
JEO;

/
”\\- Pit+1) Z@T o) T Bt [1- Py

JEOD;



Dynamic programming

Solve iteratively: t=10,1,... BUT exponential complexity: 2!



Dynamic programming

Solve iteratively: t=10,1,... BUT exponential complexity: 2!

o For binary J;; = +J: O(3,2%) = 0O, 0:]?)



Dynamic programming

Solve iteratively: t=10,1,... BUT exponential complexity: 2!

o For binary J;; = +J: O(3,2%) = 0O, 0:]?)



Dynamic programming

Solve iteratively: t=10,1,... BUT exponential complexity: 2!

o For binary J;; = +J: O(3,2%) = 0O, 0:]?)

via Dynamic programming



Dynamic programming

Solve iteratively: t=10,1,... BUT exponential complexity: 2!
o For binary J;; = +J: O(3,2%) = 0O, 0:]?)
via Dynamic programming

[Torrisi, AA, Kiihn, PRE (2021)] https://github.com/g-torr/



Dynamic programming

Solve iteratively: t=10,1,... BUT exponential complexity: 2!
o For binary J;; = +J: O(3,2%) = 0O, 0:]?)
via Dynamic programming
[Torrisi, AA, Kiihn, PRE (2021)] https://github.com/g-torr/

o Power-law: p(k) ~ vk™771, 7y=2.81; N=2-10°, kpax = 800



Dynamic programming

Solve iteratively: t=10,1,... BUT exponential complexity: 2!
o For binary J;; = +J: O(3,2%) = 0O, 0:]?)
via Dynamic programming
[Torrisi, AA, Kiihn, PRE (2021)] https://github.com/g-torr/

o Power-law: p(k) ~ vk™771, 7y=2.81; N=2-10°, kpax = 800



Solve iteratively: t=10,1,... BUT exponential complexity: 2!
o For binary J;; = +J: O(3,2%) = 0O, 0:]?)
via Dynamic programming
[Torrisi, AA, Kiihn, PRE (2021)] https://github.com/g-torr/
o Power-law: p(k) ~ vk™771, 7y=2.81; N=2-10°, kpax = 800

Dynamics: P;(t) vs i,t

1.0

iteration

|

T T T
0 50000 100000 150000

sorted node index




Dynamic programming

Solve iteratively: t=10,1,... BUT exponential complexity: 2!
o For binary J;; = +J: O(3,2%) = 0O, 0:]?)
via Dynamic programming
[Torrisi, AA, Kiihn, PRE (2021)] https://github.com/g-torr/

o Power-law: p(k) ~ vk™771, 7y=2.81; N=2-10°, kpax = 800

Dynamics: P;(t) vs i,t S 1
: s . _ N— )
Stationarity: II(P)=N"">".6(P—F;)
10 1o
s 0.8 20 cavity
=] MC
g% 6 0.6 N —~ 15
= -
§ 4 0.4 st
i 2 . 0.2 0.5
0 ll L . r u!u (Jrz 074 ofﬁ 07& ]T(J
0 50000 100000 150000 Py, P

sorted node index






0.0 02

04 06 08 10
P

@ Multimodal distribution = node heterogeneities




-== P,p-F) —— p:(p-(P))

64— T=04 : — T=10
1
! EY
~a ~
< Tx
C C
2 ! 10
i _—.—/J
0 H 1 H 0
0 02 04 06 08 10 00 02 04 06 08 10 02 04 06 08 10
P P P

@ Multimodal distribution = node heterogeneities
@ Letk; =1, 0 :{j}, P, =P:
Py = Por(+] — 0) + (1 - P)&r(—0) = ps(P)




-== P,p-F) —— p:(p-(P))

64— T=04 : — T=10
1
! EY
~a ~
< Tx
C C
2 ! 10
i _—.—/J
0 H 1 H 0
0 02 04 06 08 10 00 02 04 06 08 10 02 04 06 08 10
P P P

@ Multimodal distribution = node heterogeneities
@ Letk; =1, 0 :{j}, P, =P:
Py = Por(+] — 0) + (1 - P)&r(—0) = ps(P)




Results P(J;;#0) = nd(Ji; — J) + (1=n)6(Ji; +J), n=0.62

0.0 02 04 06 08 10 00 02 04 06 08 10 02 04 06 08 10

° MuItimoPdaI distribution = node h(:terogeneities !
@ Letk; =1, 0,={j}, P, =F:
Py = Por(+J —9) + (1 - P)or(~0) = pi.(P)
e.g. in FM chains Py 1=p(P;) = p* = p4(p*)



-== P,p-F) —— p:(p-(P))

6 — T=04 H — T=10

° MuItimoPdaI distribution = node h(:terogeneities !
@ Letk; =1, 0,={j}, P, =F:
Py = Por(+J —9) + (1 - P)or(~0) = pi.(P)
e.g. in FM chains Py 1=p(P;) = p* = p4(p*)

Note: in fully asymmetric nets only one attractor



Results P(J;;#0) = nd(Ji; — J) + (1=n)6(Ji; +J), n=0.62

-== P,p-F) —— p:(p-(P))

64 — T =04 : — T=10
1
! ! EY
~a —~
= L
(= (=
2 ! 10
' L
0 H 1 H 0
0 02 04 06 08 10 00 02 04 06 08 10 02 04 06 08 10
P P P

@ Multimodal distribution = node heterogeneities
@ Letk; =1, 0,={j}, P, =F:
Py = Por(+J —9) + (1 - P)or(~0) = pi.(P)
e.g. in FM chains Py 1=p(P;) = p* = p4(p*)

Note: in fully asymmetric nets only one attractor [Torrisi, AA, Kiihn, PRE (2021)]



© Introducing TFs: a bipartite graph model

@ One-time approximation



One-time approximation

With bi-directional links P (ny,, t) # [T;co, PW(n; t) BUT



One-time approximation

With bi-directional links PU (na, )#nga pi (n], ) BUT

pu )(naz Tlno T) HPJ_(z)(ng...Tln?mT)
JEO;



One-time approximation

With bi-directional links PU (na, )#nga pi (n], ) BUT
pt )(nal T|n0 T HPJ_(Z (nngn?T)
JEO;
Have to work with trajectories

Pi(ny "y = 37 () TIPS T nd-T)

n% T JEO;



One-time approximation

With bi-directional links PU (na, )#nga pi (n], ) BUT
pt )(nal T|n0 T HPJ_(i (nngn?T)
JEO;
Have to work with trajectories

Pi(ny "y = 37 () TIPS T nd-T)

n% T JEO;

Additional complexity in time.. One-time step approximation [Neri Bollé 2009]

t
P( )( 0.. T|770 1 Hpj(l s|77
s=1



One-time approximation

With bi-directional links  P®)(ny,,t) # [T;co, PW(n; t) BUT

T i)(,,0... T, 0...T
PO@G T |ng )= T[P g T nd")
J€O;
Have to work with trajectories

Pi(ny "y = 37 () TIPS T nd-T)

ng T JEO;

Additional complexity in time.. One-time step approximation [Neri Bollé 2009]

t
P( )( 0.. T|770 1 Hpj(l s|77
s=1

. . . &)/ ¢y t—1\ - (), t—1) t—2
= recursion for cavity marginals ;" (nj|n, ") in terms of ;" (n;™"|n; ")



One-time approximation

With bi-directional links  P®)(ny,,t) # [T;co, PW(n; t) BUT

pt )(nal T|n0 =) HPJ_(i (n9T|n?1)
J€O;

Have to work with trajectories

Pi(ny "y = 37 () TIPS T nd-T)

ng T JEO;

Additional complexity in time.. One-time step approximation [Neri Bollé 2009]

t
P( )( 0.. T|770 1 Hpj(l s|77
s=1

. . . &)/ ¢y t—1\ - (), t—1) t—2
= recursion for cavity marginals ;" (nj|n, ") in terms of ;" (n;™"|n; ")

Similar equation for P;(n!) .. Both benefit from dynamic programming!
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Symmetry breaking

Consider (i) Jij=Jji; Jij=—Jji; P(Jij,Jji) =P (Jij) P(Jj:)
0.65 { o ——yr
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__0.55 HEI\\ <P>:Nilzipi
= o050 | HEEgg. - ;Tl_{;‘}__‘_:_‘__‘__‘_*_*_iz—;zﬁ
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= bias towards activation or quiescence = Symmetry breaking

[G Torrisi, R Kiihn, AA, JSTAT (2022)]
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Extensions: Multi-node and self-interactions

mH
o Bi-directional links in bipartite graphs: o H e Jii
H —1)= =
P( A0l =1)=p ) o

© OR: ni(t+1) = O, Jyn;(t) =i —z(t)], Ju#0 X

Map: N nodes and self-interactions = 2N and bi-directional links

.. evolving according to linear threshold model

0 AND: 7,(t) = [Tjpicy m(t) = 7(t) = O[S, nins(t) — ¢y +

N 4+ P nodes, bi-directional links, linear threshold model
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e p=P(¢" #0|n =1) = at low T multiplicity of attractors
e Similarity of attractors: AND (left), OR (right)
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%.5 0.6 0.7 0.8 0.9 1.0 %.5 0.6 0.7 0.8 0.9 1.0
92 a0

Self-regulation crucial for multiplicity of attractors
Cooperativity promotes diversity
Both common features of GRNs = Sustain multi-cellular life?

[Hurry, Mozeika, AA, JPA (2022)]
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Discussion

@ Constructed a minimal model with hierarchically organized cell cycles

inspired by Neural Networks
@ Investigated reprogramming:
o Takes several cycles
e Can be achieved with realistic numbers of TFs
o Bipartite models
e Percolation: for a cell to exist, TFs typically small protein complexes
that regulate many genes
e Dynamics: efficient algorithm based on dynamic programming to
calculate gene expression profile
o for fully asymmetric networks, distribution of node activation has rich
structure; Salient features rationalised in terms of discrete stochastic
maps
extensions to bi-directional links via OTA
Unbiased interactions can sustain activation or quiescence
Extensions to multi-node & self-interactions
Multiplicity of attractors at low T’
Multi-node interactions favour diversity of attractors
Still many unanswered questions... the fight Maths vs GRNs continues!
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Dynamic programming

Bi(t+1) = (@ (hi(no,) =Vi))p, «  hilna) = Z Jijn;

o Let 0; = {1,...,k;} and def. average over subset of nodes
~ ~ kL
filb,h) = <<I>T<h+ZJijnjq9i>> =  Pi(t+1)= fi(1,0)
g=t e, kot
h = auxiliary field

fi(¢,h) obtained from backward recursion

fill,h) = Po(t) fi(£ + 1, h+ Jig) + (1 = Po(t)) fi(0 +1,h)

with terminal boundary condition f;(k; + 1,1) = &7 <17L - 791-)
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For Jij S {O,ﬂ:J}:
at each 0, f;(¢,h) requires fi(¢+1,h) and fi({ +1,h =+ J)

= evaluation of f;(¢,h) only required on discrete grid

+.J —J +J
1 k2:31 81:{17273}
o Jin=+J; Jo=—J; Jiz=+J
1 2 ; 3 1
ki+1
Nreval. = Y €= (ki +1)(ki +2)/2 Vi
/=1

Complexity O(Y_,2%) = O3, k?)
Similar reduction for Jij S {—TZ'Ji, R 8 0 1 FU SiJi}
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