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Overview

Two broad classes of non-equilibrium dynamics:
driven and aging

One general driving mechanism: trajectory biasing

Directly linked to dynamical phase transitions and
large deviations

How do driving and aging interact?

Probe in models of slow dynamics on networks:
glassy random walks
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The Kühn connection

Method for finding dynamical free energies:

Susca, Vivo & Kühn (2019):
Top eigenpair statistics for weighted sparse graphs

Physics of localization transition in large deviations:

Bacco, Guggiola, Kühn & Paga (2016):
Rare events statistics of random walks on networks:
localisation and other dynamical phase transitions
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Outline

1 Aging dynamics

2 Driven dynamics

3 Biased trajectory ensembles

4 Bouchaud trap model

5 Barrat-Mézard model

6 Finite network connectivity
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Aging
Occurs not just in living systems. . .

Aging systems could reach equilibrium – but are too slow

Significant dependence of properties on age since preparation

Polymers, spin glasses, . . .
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Simple example of aging: coarsening

Phase separation after quench from high T

Properties governed by growing domain size L(t)

E.g. two-time correlation functions decay with ratio of L’s
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Aging requires complex dynamics

Contrast with escape from single metastable state

Beyond age ∼ metastable lifetime, age-dependences disappear

Aging requires many states, broad spectrum of lifetimes
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Driven systems

Break detailed balance

E.g. sheared fluids, all living systems: energy input, dissipation

Probability currents in steady state
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Modelling driven systems

Lack of detailed balance:
More freedom to choose parameters – underconstrained?

Is there a systematic way of assigning free parameters?

E.g. for motion in bulk of sheared fluid
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Biased trajectory ensembles
Ruelle, Spohn, Evans, . . .

Start from equilibrium dynamics

Main idea: think of this as a distribution over trajectories

Modify distribution to get e.g. some average current At

Which trajectory distribution has maximum entropy?
(relative to equilibrium dynamics)
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Biased trajectory ensembles – cont.

Maximum entropy problem analogous to
equilibrium statistical mechanics:
Constraints on averages give exponential weight factors

E.g. Boltzmann distribution constrains ⟨E⟩, gives weight e−βE

Normalization defines free energy f

Similarly max ent trajectory ensemble:
Equilibrium trajectory distribution biased by factor e−gAt

Normalization defines a dynamical free energy ψ(g)
Legendre transform ⇒ large deviations P (At) ∼ e−t ϕ(At/t)

Summary

A systematic way of describing driven systems is given by
trajectory thermodynamics
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Biasing trajectory probabilities

Trajectory π; bias probability to give large/small values of At:

P [π, g] = Z(g, t)−1P [π, 0]e−gAt

Bias parameter g: analog of magnetic field h

Dynamical free energy: defined by analogy with equilibrium
free energy

ψ(g) ≡ t−1 lnZ(g, t)

Derivatives give cumulants, e.g.

−ψ′(g) = t−1⟨At⟩
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Setting: Stochastic dynamics
Markov chain

Consider stochastic model with configurations C
Transition rates W (C → C′)

Escape rate from C: r(C) = ∑
C′ ̸=CW (C → C′)

Bias in a quantity measuring transitions that system makes:
if configuration sequence is C0, C1, . . . , CK

At =

K−1∑

k=0

α(Ck, Ck+1)

At = total nr. of transitions if α(C, C′) = 1 for all C ̸= C′

(activity)

Or α(C, C′) could measure contribution of C → C′ to total
current, accumulated shear strain, entropy current, . . .
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Biased & auxiliary master operators

Dynamical partition function is largest eigenvalue of
biased master operator W(g) with elements

⟨C|W(g)|C′⟩ =
{
W (C′ → C)e−gα(C′,C), C ̸= C′

−r(C), C = C′

This does not conserve probability

But can restore this by defining effective rates
(Jack & PS, Chetrite & Touchette)

W aux(C′ → C) =W (C′ → C)e−gα(C′,C) uτ (C)
uτ (C′)

Metropolis-like factor exp{−β[Eeff
τ (C)− Eeff

τ (C′)]/2}, with
effective potential

Eeff
τ (C) = (−2/β) lnuτ (C)
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Trap models

Picture of glassy dynamics: at low T have activated jumps. . .

. . . between local energy minima in configuration space

Take each minimum as a configuration Ci or “trap”
Trap depth Ei > 0

Simplest assumption on kinetics gives Bouchaud trap model

W (Ci → Cj) =
1

N
exp(−βEi)

where N = number of configurations

Golf course landscape: always activate to “top” (E = 0)

Mean field connectivity
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Glass transition and aging

Model specified by distribution of energies ρ(E)

Typically taken as ρ(E) = exp(−E), exponential tail

Gibbs-Boltzmann equilibrium distribution
∝ exp(βE) exp(−E) normalizable only for β < 1

Glass transition at T = 1/β = 1

For T < 1 system must age, typical E ∼ T ln(t)
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Focus

How do aging and driving (activity bias)
interact?

Method: Laplace transforms,
then look at large t− τ or τ (z → 0)
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Dynamical free energy
T = 2.5
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Dynamical phase transition, active to inactive
Reminder: −ψ′(g) = average activity
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Phase diagram

g

T

First–order

Aging

phase transition

Continuous
phase transition

Tg = 1

Active

Inactive

1
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Above average activity: active phase
g = −2 (dark), −0.2, −0.02 (light), steady state trap depth distributions
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Left: T = 2.5; right: T = 0.7

For T < 1, typical trap depth increases as g → 0;
remnant of transition to aging dynamics

Effective potential Eeff = (2/β) ln(1 + ψeβE)
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Below average activity: inactive phase
g > 0, large t, p0(E) = ρ(E), T = 0.1, 0.5, 1.0 left to right
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pτ (E) ∝ ρ(E) exp(−te−βE) (away from boundaries)

Independent of g and τ
Eeff = 2T (t− τ)e−βE is time-dependent
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BM model basics

Like Bouchaud model but Glauber rates:

W (Ci → Cj) =
1

N

1

1 + exp[β(Ei − Ej)]

Same equilibrium state, same glass transition temperature

Aging different: entropic aging at low T ,
running out of lower energy states

Dynamics not frozen even at T = 0
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Phase diagram
Analytical prediction, confirmed numerically by finite-size scaling

g
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Tg = 1

1/2

Active

Aging

Inactive

Robust aging

1

Qualitative change at T = 1/2

T > 1/2: shows Bouchaud-like behaviour, can be confirmed
by explicit coarse-graining (Cammarota & Marinari)

T < 1/2: qualitatively different, mainly downward jumps
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Trap depth distributions in active phase
T = 1.5, g = −0.5 (left), T = 0.8, g = −0.1, −1 (right)
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(a) Energy distributions at T = 1.8, g = �.5.
Blue the biased equilibrium, Red the original
energy distribution e�E, and Green the unbi-
ased equilibrium distribution

(b) Energy distributions at T = 0.8. Blue at
g = �0.1, red at g = �1, light blue for original
energy distribuiton e�E

(c) Energy distributions at T = 0.2. Blue at
g = �1, red at g = �10, light blue for original
energy distribuiton e�E

Figure 5.1

the quenched when increasing �g. The main property of this models (in the unbiased scenario)
is that the equilibrium probability is decreasing above the glass transition and increasing below
it, which is the reason why it is not normalizable. The question now is, how does the biased
ensemble becomes normalizable for temperatures below the glass transition? The answer is that
for small negative bias we see a bump appear in the deep energies As the value of �g increases
the bump moves to the left approaching E = 0. Does it reach it and obtain a shape similar to
the equilibrium distribution above the glass transition? The answer, of course, is that numerical
simulation suggests that this only occurs for temperatures above T = 1/2 and that it does not
occur for temperatures below it. Again, this feauture is present in Bouchaud for all temperatures

We can summarize it in the next way.
For T > 1. Even though the unbiased system is already stationed at high energy and high

activity we see the biasing reduces the typical time in several orders of magnitude for the deep
traps, and prompts jumps to the top. See Figures 5.4a, 5.3a

For 1/2 < T < 1 The behavior is qualitatively similar to the previous one. Typical times
are reduced and jumps to the top are favored. If you look at the jump probabilities it is clear
that for small bias the most probable jump from the bottom energies is not the top but one
slightly below. This corresponds to the position of the bump. For the higher value of bias (more
negative) the jump to the top becomes the most probable, and thus the shape of the equilibrium

30

ρ(E) equilibrium

g = -0.5

(a) Energy distributions at T = 1.8, g = �.5.
Blue the biased equilibrium, Red the original
energy distribution e�E, and Green the unbi-
ased equilibrium distribution
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(b) Energy distributions at T = 0.8. Blue at
g = �0.1, red at g = �1, light blue for original
energy distribuiton e�E

(c) Energy distributions at T = 0.2. Blue at
g = �1, red at g = �10, light blue for original
energy distribuiton e�E
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ρ(E)

g = -1

g = -0.1

For T < 1, distributions again shift to large E on approaching
inactive phase
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Aging Driving Biased traj Bouchaud BM Networks

Inactive phase, T > 1/2
T = 0.8, g = 0.25, t = 100 and 1000 (left), g = 0.5, t = 1000 (right)
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(a) Pg(E, ⌧) at T = 0.8 and g = 0.25, t = 100
for the first bump and t = 1000 for the second.
Also drawn are the curves for 20 intermediate
tau values.

(b) Pg(E, ⌧) at T = 0.8 and g = 0.5, t = 1000.
Also drawn are the curves for 20 intermediate
tau values.

(c) Pg(E, ⌧) at T = 0.2 and g = 0.5, t = 1000.
Also drawn are the curves for 20 intermediate
tau values.

(d) Pg(E, ⌧) at T = 0.2 and g = �0.5, t = 1000.
Also drawn are the curves for 20 intermediate
tau values.

Figure 5.5

were observed. The computational limitations previously mentioned seriously di�culted the
possibility of ”playing” with the parameters to observe the behavior in di↵erent points.

If one is wondering, why not observing the system in smaller times, the answer is that it
contradicts our assumptions of long times. But also, it contradicts our interest of seeing how
this system evolves over time.

We strongly encourage a further analysis of the inactive phase of the BM model with more
computational power.
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(a) Pg(E, ⌧) at T = 0.8 and g = 0.25, t = 100
for the first bump and t = 1000 for the second.
Also drawn are the curves for 20 intermediate
tau values.
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(b) Pg(E, ⌧) at T = 0.8 and g = 0.5, t = 1000.
Also drawn are the curves for 20 intermediate
tau values.

(c) Pg(E, ⌧) at T = 0.2 and g = 0.5, t = 1000.
Also drawn are the curves for 20 intermediate
tau values.

(d) Pg(E, ⌧) at T = 0.2 and g = �0.5, t = 1000.
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pτ (E) for increasing τ approaches shape only dependent on t

System rapidly descends to deep traps

Total nr. of jumps finite, average activity decays as τ−1−α
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Inactive phase, T < 1/2
T = 0.2, g = 0.5, t = 1000 (left) and g = −0.5 (right)

(a) Pg(E, ⌧) at T = 0.8 and g = 0.25, t = 100
for the first bump and t = 1000 for the second.
Also drawn are the curves for 20 intermediate
tau values.

(b) Pg(E, ⌧) at T = 0.8 and g = 0.5, t = 1000.
Also drawn are the curves for 20 intermediate
tau values.
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(c) Pg(E, ⌧) at T = 0.2 and g = 0.5, t = 1000.
Also drawn are the curves for 20 intermediate
tau values.

(d) Pg(E, ⌧) at T = 0.2 and g = �0.5, t = 1000.
Also drawn are the curves for 20 intermediate
tau values.

Figure 5.5
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computational power.

35

(a) Pg(E, ⌧) at T = 0.8 and g = 0.25, t = 100
for the first bump and t = 1000 for the second.
Also drawn are the curves for 20 intermediate
tau values.

(b) Pg(E, ⌧) at T = 0.8 and g = 0.5, t = 1000.
Also drawn are the curves for 20 intermediate
tau values.

(c) Pg(E, ⌧) at T = 0.2 and g = 0.5, t = 1000.
Also drawn are the curves for 20 intermediate
tau values.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t=100.000000

E

P
g
(E

)

(d) Pg(E, ⌧) at T = 0.2 and g = �0.5, t = 1000.
Also drawn are the curves for 20 intermediate
tau values.

Figure 5.5

were observed. The computational limitations previously mentioned seriously di�culted the
possibility of ”playing” with the parameters to observe the behavior in di↵erent points.

If one is wondering, why not observing the system in smaller times, the answer is that it
contradicts our assumptions of long times. But also, it contradicts our interest of seeing how
this system evolves over time.

We strongly encourage a further analysis of the inactive phase of the BM model with more
computational power.

35

Aging persists in presence of bias: “robust aging”

Activity decays as τ−1, like for g = 0

Total number of jumps diverges with t
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Bouchaud model on random regular network

Fixed finite connectivity c

Use cavity theory to find largest eigenvalue of W(g) and
associated eigenvector
(Kabashima, Susca et al)

Apply to large single instances of networks
(population dynamics subtle)
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Appendix C. High T approximation

In this appendix we discuss the construction of the high T approximation for the DOS, ρA(λ) 
(see (40)). As mentioned in section 4, we take one cavity iteration at finite T, starting from the 
infinite temperature solution. Consequently the cavity precisions are evaluated without on-site 
disorder as the limit T → ∞ gives τk = 1 for all k. Also, in the thermodynamic limit the ran-
dom regular graph structure becomes effectively a regular tree, and the problem of finding the 

kk
jj j

k

ll

Figure C1. Left: schematic representation of the first order approximation: the sub-
graph in red (only a small portion is shown here, namely the nearest and next-nearest 
neighbours of j), where disorder is absent, follows the infinite temperature solution. The 
‘messages’ from the nearest neighbour nodes k feed into the central node through one 
cavity step at finite T (blue arrows indicate an evaluation involving energy disorder). 
Right: at the second order we take two finite T steps starting from the infinite temperature 
solution at the next-nearest neighbours l.

Figure D1. Left: average IPR evaluated via (43) and (46) using different values of ε 
(dark blue to light blue), extended DOS (black) and total DOS (green dashed line); Ī⋆

2 (λ) 
from (46) is averaged within λ-bins for clearer visualisation. In the extended region of 
the spectrum the IPR scales with ε as expected. Top right: histogram of the Ai values 
collected at λ ≃ −1.465 (in the localised region on the left side of the spectrum), note 
that ρ(Ai) is smooth around Ai = −λ. Bottom right: Ī⋆

2 (λ) against decreasing values 
of ε. The green points converge to the limiting value of unity, the black points drop 
to zero because the ε values used over there are too small to ensure proper averaging. 
Evaluations were performed using a population of size Np = 2500, with temperature 
and connectivity of T  =  1.5 and c  =  5, respectively.

R G Margiotta et alJ. Phys. A: Math. Theor. 51 (2018) 294001
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Completing the square and integrating out yl one finds

P( j)(yk) ∝ e− i
2 λεy2

k/rk
∏

l∈∂k\j

e− i
2 y2

k− 1
2 (i+ ω

(k)
l )−1 y2

k . (B.4)

As by definition this must be proportional to exp(−ω
( j)
k y2

k/2), it follows that

ω
( j)
k =

iλε

rk
+

∑

l∈∂k\j

iω(k)
l

i + ω
(k)
l

 (B.5)

which after replacing rk = (τkc)−1 is the desired cavity equation. The calculation for the mar-
ginal precisions {ωj} (see (34)) is exactly analogous. Note that the discussion so far allows any 
kind of graph structure, i.e. it is independent of a specific choice for the degree distribution pk, 
and it also allows correlations between degree and energies.

When going from the above considerations for a single finite-sized graph to the thermody-
namic limit, one assumes that the cavity precisions {ω

( j)
k } are random variables taken from 

some distribution p(ω). Equation (B.5) then turns into a self-consistent equation for p(ω). 
For a general degree distribution pk and a joint distribution ρτ ,k(τ , k) = ρτ |k(τ |k) pk this reads

p (ω) =
∑

k

p kk
c

∫
dτ ρτ |k(τ |k)

k−1∏

l=1

dωl p (ωl) δ(ω − Ωk−1) (B.6)

where c is the average degree of the network, pkk/c is the probability that a randomly chosen 
edge connects the root-node to a neighbour with degree k, and

Ωk−1 = Ωk−1 ({ωl}, τ) = iλετc +
k−1∑

l=1

iωl

i + ωl
. (B.7)

Clearly (B.6) reduces to the result for random regular graphs (36) in the main text once we 
impose that ρτ |k(τ |k) = ρτ (τ) and pk = δc,k. The population dynamics algorithm for the gen-
eral case (B.6) follows the same protocol as discussed in section 4, with the only difference 
that, at each update, one has to pick k randomly with weight pkk/c, then draw k  −  1 elements 
from P  and τ from ρτ |k(τ |k).

We conclude this appendix with a final remark: while the change of variable yi = xir
1/2
i  is 

not essential for single instance cavity evaluations, i.e. for fixed realisations of the disorder, 
this step becomes necessary in going to the thermodynamic limit. This is because otherwise 
correlations between cavity precisions on different branches of a cavity graph would be cre-
ated by the coupling to the local disorder, and therefore the assumption of statistical independ-
ence between these cavity precisions would be violated.

j
k

j
k

Figure B1. Neighbourhood of site j on G  (left) and on G( j) (right). The red cross 
indicates that j is absent in G( j) and the branches become independent when the local 
structure is treelike.

R G Margiotta et alJ. Phys. A: Math. Theor. 51 (2018) 294001
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Dynamical free energy
5. Results

Figure 5.1.: The leading eigenvalue ⁄c = ≠Â(g) against biasing field g for the sparsely
connected network c = 3 computed using the cavity method as described in section 3.2 on
one specific system with size N = 220 at temperatures from left to right T = 0.5, 1.5, 2.5.
For comparison the analytic result (compare (4.1)) for the mean field limit is plotted as
well. We restricted the plot to the active side, i.e. g Æ 0.

results to systems with finite connectivity in particular c = 3.

To find the two free parameters – and a0 from numerical data, we compute Â(g) for
g œ {2≠k|k œ N, k Æ 10} and plot the data in a double logarithmic scale (figure 5.2).
One observes a linear graph, because taking the logarithm on both sides of (4.22) yields

log(Â(g)) ¥ log(a0) + – log(g). (5.1)

Figure 5.2 shows three plots, one for each temperature T = 0.5, 1.5 and 2.5. The two
temperatures T > 1 in this limit almost agree with the mean field limit. We therefore
did not plot a fit, but only the analytic result (4.29). For the temperature T = 0.5 we
observe that the exponent of mean field and sparse case are almost the same but the
proportionality constant is not. We therefore did assume that Â(g) Ã g2 and determined
the y-axis o�set. For this we ignore the value at g = ≠2≠10 because it seems like there
is a numerical error in the computation as it clearly lies o� the straight line. We also
ignore the values for g Æ ≠2≠4 because one starts to see a slightly non-linear behaviour
there. We obtain the result

Â(g) = (0.82 ± 0.01) · g2 for g ¬ 0. (5.2)

Summarizing one can say that above the glass transition, i.e. for T > 1 the mean field
limit and sparse case have the same behaviour for ≠1 π g < 0, with the same critical
exponent and the same activity. Below the glass transition, the critical exponent is still
the same, however, the proportionality constant di�ers and therefore the activity does
as well. Di�erences between mean field and the sparse case above the glass transition
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ψ(g) qualitatively similar to mean field limit c→ ∞
High temperature limit can be taken in cavity equations:
independent of c
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Dynamical free energy near g = 0

5.2. Finite size e�ects

become significant for large biases, where we also observe the localization transition
(discussed in section 5.3.1). It is not clear yet, if there is a connection between these
two behaviours, i.e. localization transition and di�erence of dynamical free energy to the
mean field limit.

(a) T = 0.5

(b) T = 1.5 (c) T = 2.5

Figure 5.2.: The leading eigenvalue ⁄c = ≠Â(g) against biasing field g for the sparsely
connected network c = 3 computed using the cavity method as described in section 3.2
on one specific system with size N = 220 at temperatures as indicated. The shown values
are results from simulations for g œ {2≠k|k œ N, k Æ 10}. The plots are on a double
logarithmic scale. The graphs show an almost linear behaviour which implies a power
law relation around g = 0. The exponent of the power law, i.e. the slope of the above
graphs are the critical exponents of the system.

5.2. Finite size e�ects
We are originally interested in the thermodynamic limit where N æ Œ. However as we
cannot work with infinite dimension numerically and the population dynamics algorithm
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Activity −ψ′(g) for g → 0 independent of c (for T > 1)
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Localization transitions & phase diagram
Left: single instance with N = 220 nodes5. Results

values as extended or localized (compare figure 5.5). We characterized the extended
states by the IPR being proportional to the inverse system size N≠1 so it makes sense
to compute the IPR for di�erent system sizes and compare these (figure 5.6).

Figure 5.5.: Inverse Participation Ration (IPR) for di�erent temperatures on a system
of size N = 220. The y-axis is in logarithmic scale, and the range for g is from -1.6 to
-0.1 in steps of 0.1. The range of the localization transition observed in this plot are
given in figure 5.7.

For the sparse system with connectivity c = 3 we observe a localization transition
for negative g. Close to the unbiased case, the leading eigenvectors are extended, that
is, the IPR is proportional to 1/N . This was also the prediction in the mean field
limit (compare section 4.1.1). As the bias (towards high activity) becomes stronger,
we observe localized eigenvectors, that is IPR ≥ 1/10 independent of system size N .
This transition is temperature dependent. For each temperature there are two plots in
figure 5.6, one shows the IPR and one shows N IPR, where N is the system size. In
the former we observe an independence of the IPR on N for large enough biases, that
means the curves mostly agree for g < gloc. The latter respectively shows, that NIPR
is independent of N in the extended regime g > gloc.

Having established that the localization transition is independent of system size, we
can now consider the less crowded plot in figure 5.5, which plots the results for the IPR
for one specific system of size N = 220. One can read o� that the localization transition
happens in certain intervals which are stated in figure 5.7.

There are two indicators that we have observed that might help to determine if a state
is localized or extended, and one is the behaviour of the log growth rate and the other

36

Dynamical transition at g = 0 is always a localization
transition

Additional localization transition at T -dependent g < 0
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Aging Driving Biased traj Bouchaud BM Networks

Spectral gap
Single instance vs population dynamics
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Structure of localized eigenvectors for g < 0

Localization on shallow traps

Requires clusters of shallow traps
(compare De Bacco et al)
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Conclusion & Outlook

Summary

Driving by activity bias in Bouchaud trap model has
non-trivial effects

Aging is fragile: bias towards inactivity ⇒ freezing

Low-activity phase: time-dependent effective potential
forces time-independent pτ (E)

Barrat-Mézard: qualitatively different for T < 1/2

Aging is robust to biasing towards inactivity

Outlook

Universality classes of aging (robust, fragile, . . . )?

Aging in “directly” driven systems?

Nature & dynamical consequences of localization transitions
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Link to large deviations

E.g. in Ising model magnetization distribution

P (M) ∼ e−Nϕ(m)

Large deviation function ϕ(m), with m =M/N

Free energy as function of magnetic field h

f(h) = −N−1 ln⟨ehM ⟩ ≈ min
m

ϕ(m)− hm

So Legendre transform links ϕ(m) and f(h):
change of ensemble, fixed m vs fixed h

Works the same for trajectories: can get P (At) ∼ e−t ϕ(At/t)

from dynamical free energy ψ
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Example: Distribution of total activity
Spin model with constrained kinetics

At = total number of transitions (spin flips)

Two peaks in lnP (At): phase coexistence

Analogous to magnetization in Ising model at h = 0
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Aging Driving Biased traj Bouchaud BM Networks

Space-time plots: Dynamical heterogeneity

Domains of different space-time phases
(Jack, Garrahan, Chandler, Lecomte, van Wijland, Lecomte, Pitard, . . . )
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Aging Driving Biased traj Bouchaud BM Networks

Dynamical heterogeneity in colloidal glasses
(Eric Weeks group)

Dynamical heterogeneity makes individual particle motion
intermittent
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Bouchaud model: Effective transition rates
g = −2,−0.2,−0.02

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

E2

W
au
x

W aux(E1 → E2) (for E1 = 2, T = 0.7)

Jumps to shallow traps are favoured
Overall rate increases with |g|
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Bouchaud model: Effective transition rates
t− τ = 103(light), 104, 105, 106(dark)

0 2 4 6 8 10 12
0

5.×10-8

1.×10-7
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2.×10-7

2.5×10-7

E2

W
au
x

W aux(E1 → E2) (at E1 = 7, T = 0.4)

At early times jumps only into deep traps
Effective threshold level rises towards end of trajectory
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Time-dependent activity

Average activity now depends on time τ along trajectory

Goes as τ−1−T (away from temporal boundaries)

Jumps concentrated in initial part of trajectory (for T < 1)

Total activity is ∝ (eg − 1)−1, only finite number of jumps

Bias towards inactivity freezes system
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BM model: Effective transition rates in active phase
T = 0.8, g = −0.1 (left), T = 0.8, g = −1 (right)

(a) Logarithm of the auxiliary transition
rates from E to E⇤ at T = 1.8, g = �.5

(b) Logarithm of the auxiliary transition
rates from E to E⇤ at T = .8, g = �.1

(c) Logarithm of the auxiliary transition
rates from E to E⇤ at T = .8, g = �1.

(d) Logarithm of the auxiliary transition
rates from E to E⇤ at T = .2, g = �1.

(e) Logarithm of the auxiliary transition
rates from E to E⇤ at T = .2, g = �10.

Figure 5.2: In all graphs E⇤ is on the y-axis an E on the x-axis

For T > 1/2 it seems like the behavior is indeed analogous to the Bo model, but with a
bump that goes ”faster” to lower energies. But it does look as like the curve reaches a limit
shape. It was observed that the shape was in fact g independent. See figures 5.5a and 5.5b. The
second bump corresponds to the same time but di↵erent values of g. The heights are roughly
the same, about 0.4. We also saw this curve depends on time t. In figure 5.5a we see two distinct
bump for di↵erent times. The activity was observed to have a dependence of order ⌧�(1+↵) with
↵ > 0. There was not su�cient data to guess a temperature dependence, but a finite number
of jumps was definitely suggested. In figure 5.7a an exponent of this kind is observed. See also
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For T > 1/2 it seems like the behavior is indeed analogous to the Bo model, but with a
bump that goes ”faster” to lower energies. But it does look as like the curve reaches a limit
shape. It was observed that the shape was in fact g independent. See figures 5.5a and 5.5b. The
second bump corresponds to the same time but di↵erent values of g. The heights are roughly
the same, about 0.4. We also saw this curve depends on time t. In figure 5.5a we see two distinct
bump for di↵erent times. The activity was observed to have a dependence of order ⌧�(1+↵) with
↵ > 0. There was not su�cient data to guess a temperature dependence, but a finite number
of jumps was definitely suggested. In figure 5.7a an exponent of this kind is observed. See also
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Jumps biased towards more shallow traps

Resulting rates are non-monotonic in arrival trap depth
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Stochastic dynamics
Markov, unbiased

Start from stochastic model with configurations C
Transition rates W (C′ → C)
Master equation:

∂

∂t
p(C, t) = −r(C)p(C, t) +

∑

C′ ̸=C
W (C′ → C)p(C′, t)

Escape rate from C: r(C) = ∑
C′ ̸=CW (C → C′)

Matrix/vector form: let |P (t)⟩ = ∑
C p(C, t)|C⟩, then

∂

∂t
|P (t)⟩ = W|P (t)⟩

Master operator W has matrix elements
⟨C|W|C′⟩ =W (C′ → C)− δC,C′r(C)
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Time-integrated quantities

In simplest case, might want to bias trajectories according to
cumulative value of some observable

Bt =

∫ t

0
dt′B(t′)

where B(t′) = b(C(t′)) depends only on configuration C(t′)
Or bias depending on transitions that system makes:
if configuration sequence is C0, C1, . . . , CK , use

At =

K−1∑

k=0

α(Ck, Ck+1)

At = total number of moves if α(C, C′) = 1 for all C ̸= C′

(activity)

Or α(C, C′) could measure contribution of C → C′ to total
current, accumulated shear strain, entropy current, . . .
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Biasing trajectory probabilities

Trajectory π; bias probability to give large/small values of Bt:

P [π, g] = Z(g, t)−1P [π, 0] exp [−gBt]

Bias parameter g; canonical version of hard constraint on Bt

Trajectory partition function (discretize, t =M∆t)

Z(g, t) =
∑

C0...CM
exp{∆t

M∑

i=1

[W (Ci−1→Ci)− gb(Ci−1)]}p0(C0)

→ ⟨e|eW(g)t|0⟩, W(g) = W− g
∑

C
b(C)|C⟩⟨C|

Projection state ⟨e| = ∑
C⟨C|

Unbiased initial (e.g. steady) state |0⟩ = ∑
C p0(C)|C⟩
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Dynamical free energy

Define by analogy with equilibrium free energy as

ψ(g) ≡ lim
t→∞

t−1 lnZ(g, t)

If configuration space is finite, can decompose
W(g) =

∑
i ωi|Vi⟩⟨Ui|

Then ψ(g) = maxi ωi (Lebowitz Spohn)

Maximum eigenvalue “generically” non-degenerate

Same for bias in At (activity, current etc), with

⟨C|W(g)|C′⟩ =
{
W (C′ → C)e−gα(C′,C), C ̸= C′

−r(C), C = C′
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Bias as time-dependent master operator
(Transcribing from Chetrite & Touchette)

Can we write biased path probability

P [π, g] = Z(g, t)−1
M∏

i=1

⟨Ci|eW(g)∆t|Ci−1⟩ × p0(C0)

. . . as resulting from effective time-dependent master equation:

P [π, g] =
M∏

i=1

⟨Ci|eW
aux
i−1(g)∆t|Ci−1⟩ × paux0 (C0)

Idea: set

⟨Ci|eW
aux
i−1(g)∆t|Ci−1⟩ =

ui(Ci)
ui−1(Ci−1)

⟨Ci|eW(g)∆t|Ci−1⟩
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Bias as time-dependent master operator (cont)

Require: uM (CM ) = 1, paux0 (C0) = p0(C0)u0(C0)/Z(g, t) and
normalization

∑

Ci
⟨Ci|eW

aux
i−1(g)∆t|Ci−1⟩ ≡

∑

Ci

ui(Ci)
ui−1(Ci−1)

⟨Ci|eW(g)∆t|Ci−1⟩ = 1

Hence the ui can be determined backwards in time:

ui−1(Ci−1) =
∑

Ci
ui(Ci)⟨Ci|eW(g)∆t|Ci−1⟩

In vector notation: ⟨Ui−1| = ⟨Ui|eW(g)∆t

Solution: ⟨Ui| = ⟨e|eW(g)(M−i)∆t

Thus paux0 (C) = ⟨e|eW(g)t|C⟩p0(C)/⟨e|eW(g)t|0⟩, normalized
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Effective transition rates
Continuous time: τ = i∆t, ∆t → 0

Expanding relation between Waux and W(g) to O(∆t) gives
effective rates

⟨C|Waux
τ |C′⟩ = ⟨C|W(g)|C′⟩ uτ (C)

uτ (C′)

or explicitly

W aux(C′ → C) =W (C′ → C)e−gα(C′,C) uτ (C)
uτ (C′)

Effect of uτ (C) can be interpreted as Metropolis-like factor

e−β[Eeff
τ (C)−Eeff

τ (C′)]/2, with effective potential

Eeff
τ (C) = (−2/β) lnuτ (C)
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Effective exit rates

Effective exit rates follow from normalization as

−⟨C|Waux
τ |C⟩ = −⟨C|W(g)|C⟩+ ⟨Uτ |W(g)|C⟩

⟨Uτ |C⟩

Explicitly

raux(C) = r(C) + ⟨Uτ |W(g)|C⟩
⟨Uτ |C⟩

Shift in general dependent on C (and τ)
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Biased & auxiliary master operators

Dynamical partition function derived from a biased master
operator W(g) with elements

⟨C|W(g)|C′⟩ =
{
W (C′ → C)e−gα(C′,C), C ̸= C′

−r(C), C = C′

This does not conserve probability

But can restore by multiplicative reweighting
(Jack & PS, Chetrite & Touchette)

⟨Cτ+∆t|eW
aux
τ (g)∆t|Cτ ⟩ =

uτ+∆t(Cτ+∆t)

uτ (Cτ )
⟨Cτ+∆t|eW(g)∆t|Cτ ⟩

Normalization forces ⟨Uτ | = ⟨e|eW(g)(t−τ)
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Effective transition rates
Continuous time: τ = i∆t, ∆t → 0

Relation between Waux and W(g) gives effective rates

W aux(C′ → C) =W (C′ → C)e−gα(C′,C) uτ (C)
uτ (C′)

Effect of uτ (C) can be interpreted as Metropolis-like factor

e−β[Eeff
τ (C)−Eeff

τ (C′)]/2, with effective potential

Eeff
τ (C) = (−2/β) lnuτ (C)
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Time dependence

Effective master operator and potential in general
time-dependent

Also state probabilities

pτ (C) =
⟨e|eW(g)(t−τ)|C⟩⟨C|eW(g)τ |0⟩

Z(g, t)
=
uτ (C)vτ (C)
Z(g, t)

where |Vτ ⟩ = eW(g)τ |0⟩
Product of forward (from past) and backward (from future)
factors

Time-dependences disappear if driven system reaches
stationary state – but not if there is aging
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