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An introduction



Dynamics in high-D: many competing equilibria.

Glasses, proteins, ecosystems (microbiome), neural

networks, financial markets: many components

interacting in eterogeneous (— random) way

> Configuration: x = (x, -+, xp) € Mp, D> 1

> Dynamics: 0, xi(t) = fi(x(?), @) + n,(?) d randomness

(n* (1)) « !

Equilibria x*: 0, x* = f(x*,a) =0 {for all i
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Dynamics in high-D: many competing equilibria.

Glasses, proteins, ecosystems (microbiome), neural

networks, financial markets: many components

interacting in eterogeneous (— random) way

> Configuration: x = (x, -+, xp) € Mp, D> 1

> Dynamics: 0, xi(t) = fi(x(?), @) + n,(?) d randomness

(n* (1)) « !

Equilibria x*: 0, x* = f(x*,a) =0 {for all i

(1) High-D & eterogeneous interactions produce
“glassiness”: huge number ./ ~ eP* of competing,

very different equilibria [Z= “complexity”]

different equilibria with same diversity

(2) Dynamics with many attractors can be

complex: slow (aging), chaotic, intermittent,

with avalanches, activated...
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Purpose: understand this dynamics quantitatively.

Approach: count & classify all equilibria as a function of “typical”
properties (e.g. stability). Statistics.

A long hlstory in the field of glasses & spin glasses:

World Scientific Lecture Notes in Physics - Vol. 9 Y

SPIN GLASS THEORY g THEORY OF
e 8 RS |

An Introduction to the Replica Method

and lts Applications Repl ca Sym y Breaki ng After 40 Years

https://dissyskel.github.io/news/rsb40/ 2/23



The optimization paradigm...

> Fitness landscapes in evolutionary biology
Park, Hwang, Krug JPhysA 53 (2020) [....]

ti blems: d,x; = fi(x,a) = — 0, &(X, a , , : :
ClomBTRIAT JprolblamkE 6% =R @) ;& (X, @) > Loss landscapes in machine (supervised) learning

Equilibria are stationary points of high-D Raskerville et al JPhysA 55 (2022) ...
landscape &(x,a).

> Cost landscapes in inference & constraint satisfaction
Fedeli, Fyodorov JSP 176 (3019) [....]

> Energy landscapes in condensed /soft matter, e.g.

D
x conf of particles/spins, ., sphere, inz =D
i=1
o
A) — P . ... : (p)
E(x,a) = Z Z @ Xy Xy with a*’. random

. . lln--lp
P=21iy,,i,

“spherical p-spin models” « effective model structural glasses

M p, of dimension D > 1

Kirkpatrick, Thirumalai, Wolynes 1989

Crisanti, Sommers 1992
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...and beyond: non-reciprocity.

> Interacting neurons in neuroscience

Sompolinski, Crisanti, Sommers 1988 [....]

> Interacting firms (or traders, or banks)

Moran, Bouchaud 2019 [....]
Non-conservative problems: d.x; = f(X, @) # 0,8,

because of non-reciprocal (asymmetric) » Gene-regulatory networks

interactions. — A. Annibale talk

> Interacting species in ecology, e.g.

x species abundance, = R?

J

“Generalized random Lotka-Volterra equations”

May 1972
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The program.

1. Count

(Glassiness or not?
“Topology trivialization” transitions?

configuration space ./,

® >

control parameter

3. Link to dynamics

Which attractors trap system at shorter times? At
longer times? Most probable dynamical paths?
Aging, activated jumps, chaos?

2. Classify

How many at a given height,
or with fixed fraction of x; > ¢?
Which are stable or unstable?

Distribution and connectivity in

configuration space?
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An example & two questions




Simple Gaussian landscapes.

D
Configuration space . : sphere Z x*=D
i=1

Gaussian landscape & ,(x) = Z A; . XX

iy X% P23
iy

o o / D X X, ’
Isotropic correlations: <%p(X) &, (x )> D) ( D >
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Simple Gaussian landscapes.

pA)
D
Configuration space ./ : sphere Z x*=D Hessian
a1 at threshold
'0 e
Gaussian landscape & ,(x) = Z @i XX p =3
e Threshold - marginal stability
1 P
. _ / D [(x-x'\’
Isotropic correlations: <%p(X) C5[)(X )> = S\ exponentially-many minima, high-index

& low-index saddles saddles k « D

A

0.015+
B Count & classify :
0.010} k=0
N — k=1
N (€) = number of equilibria x* at &= D e. ;]& k=2
log /' (e I _
Quenched complexity 2,(e) = lim (log /(©)) 0-005 k=3
D— oo k=4
Gavagna, Giardina, Parisi 1998 0.000b. ... A S S .l_..ff.s. s
Auffinger, Ben Arous, Cerny 2013 1175 —1170 —1165 —1160 —1155 —1150

€
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Simple Gaussian landscapes.

p(4)
D
Configuration space ./ : sphere Z x*=D Hessian
i=1 at threshold
'0 e

Gaussian landscape & ,(x) = Z aj.i XX p=3
AR Threshold - marginal stability

P

high-index

D (x-x\
Isotropic correlations: <%p(x) C(opp(x’)> = 5 ( > exponentially-many minima,
saddles k o« D

D
& low-index saddles

A

0.015¢

B Count & classify

0.010+
©
N (€) = number of equilibria x* at &= D e. =
. . (log #(€)) N 005
Quenched complexity 2,(e) = lim
D— oo
Gavagna, Giardina, Parisi 1998 0.000 A - |
Auffinger, Ben Arous, Cerny 2013 1175 —1170 —1165 —1160 —1155 —1150

€

B Link to dynamics

“Short-time” dynamics t ~ O(D) approaches asymptotically the threshold energy [marginally stable minima] and ages

To explore bottom of the landscape (and eventually equilibrate) need #(D) ~ O(e?): jumps between stable minima.
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Simple Gaussian landscapes.

p(4)
D
Configuration space ./ : sphere Z x*=D Hessian
i=1 at threshold
'0 e

Gaussian landscape & ,(x) = Z Q. XX p=3
AR Threshold - marginal stability

P

high-index

D (x-x\
Isotropic correlations: <%p(x) C(opp(x’)> = 5 ( > exponentially-many minima,
saddles k o« D

D
& low-index saddles

A

0.015+
B Count & classify @@ :
0.010} k=0
N — k=1
N (€) = number of equilibria x* at &= D e. 2 ;]& k=2
log /' (e I _
Quenched complexity 2,(e) = lim (log /(©)) 0-005 k=3
D— oo k=4
Gavagna, Giardina, Parisi 1998 0.000b. ... A S S .l_..ff.s. s
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€

B Link to dynamics

“Short-time” dynamics t ~ O(D) approaches asymptotically the threshold energy [marginally stable minima] and ages

To explore bottom of the landscape (and eventually equilibrate) need #(D) ~ O(e?): jumps between stable minima.
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This talk: two questions.

B Where are unstable attractors, i.e. the saddles?

B What happens when the landscape picture breaks down?
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This talk: outline.

B Beyond “standard” landscape-based tools
B Direct counting, & how random matrix theory helps

B The two questions: why relevant, what we can say about them
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“Standard” tools & more recent inputs




“Standard” glassy counting techniques.

Standard recipes involve “tweaked” equilibrium calculations [~ large deviations]

Franz and Parisi 1995
Monasson 1995

<« Ground States (GS)

Thermodynamics: £, = dee‘ﬁ%(x)

When f§ - o0, selects deepest minima (GS).

How to pick up & count the # ~ eP* local minima
(metastable states)?
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“Standard” glassy counting techniques.

Standard recipes involve “tweaked” equilibrium calculations [~ large deviations]

Franz and Parisi 1995
Monasson 1995

<« Ground States (GS)

Thermodynamics: Z, = dee‘ﬂ%(x)

When f§ - o0, selects deepest minima (GS).

How to pick up & count the # ~ eP* local minima
(metastable states)?

—— The Monasson method

Free energy of m weakly coupled “real replicas”

D—0,e—0

F(m, ,B) = lim D_1 <]0g [[de(i)e—ﬂzk %(x(k))+€zklx(k)x(l)] >

k=1

Related to number of metastable states by Legandre
transform: F(m,p) ~ fm — = 'D~og /' (f, §)

Reconstruct parametrically the complexity X:

f=0,F(m,p)  £=D"llogW =m0, (
m

(Take f — oo at the end: free energy f — energy ¢)

Developments: Mueller, Leuzzi, Crisanti 2006
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“Standard” glassy counting techniques very insightfull.

4 ' -
= ’
24 =~
" 5 'e
e — ",

THEORY OF
SIMPLE GLASSES

Exact Solutions in Infinite Dimensions

however:

1. Need a potential function/ energy landscape.

2. Pick up stable (marginally) stationary points, i.e. local minima.
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Another approach: Kac-Rice formula(s).

Number J(¢) of equilibria x* such that f(x*) = (— V%(X*)) = 0 and ®(x*) = ¢ (arbitrary constraints)

Random variable with scaling: ./ (¢) ~ e? > @0,

“Kac-Rice formula”: recipe to compute moments of /4 (¢)

of (%)
ix P, (f=0)E, [‘am( & ) Pt Hr:o}

J

E[AV(H)] = J

M p

Higher moments:

n n of- (m)
E[A"(P)] = [ de(m) ga{x(m)} <{f(m) = 0}) [E{X<m>} H det ( il )> ‘)(d)(x(mb:gb H {f(m) — 0}
m=1

(m)
ME" = —— dxj
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Another approach: Kac-Rice formula(s).

Number J(¢) of equilibria x* such that f(x*) = (— V%(X*)) = 0 and ®(x*) = ¢ (arbitrary constraints)

Random variable with scaling: ./ (¢) ~ e? > @0,

“Kac-Rice formula”: recipe to compute moments of /4 (¢)

of (%)
ix P, (f=0)E, [‘aa( & ) Pt Hr:o}

E[AV(H)] = J

M p

J

Higher moments:

T lm . - ™) .
dX( )gj{x(m)} <{f( ) = 0}) [E{X(m)} H det ( dx(m) )(q)(x(m))=¢ H {f( ) — 0}
1 J

m=1

E[A"())] = [

®
'%Dn m=

. E[log ¥ ()] . B[] -1
Complexity via replica trick: Z(¢) = glm e V@ = glm hr% O
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The recent input: Random Matrix Theory tooolbox.

of(x(™
ey
Oxj(m)

n df(x
W Since forces fi(x) are random, need to control random matrix field M[x] = fiX) Fyodorov (4004)

ax]'

n

m=1

ﬂ%n m=1

()
AD(xm)=¢ H {f(m) = 0} ~ DPZ"+o(D)

W Problem of coupled, conditioned random matrices

M Gaussian fields: can characterize the whole conditional distribution of matrix field: GOE, weakly

deformed by conditioning (— finite rank perturbations)
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The recent input: Random Matrix Theory tooolbox.

ELA"($)] = J [T @x™ 2y ({87 = 0} ) Eggny | TT [0t [ =5 ) | 2om1—s H (£ = ) | ~ D= 4o®)
B m=1 m=1 ame
n of(x
W Since forces fi(x) are random, need to control random matrix field M[x] = fix) Fyodorov («004)

axj'

W Problem of coupled, conditioned random matrices

W Gaussian fields: can characterize the whole conditional distribution of matrix field: GOE, weakly

deformed by conditioning (— finite rank perturbations)

Stability of equilibria is encoded in the spectrum of matrices.
For conservative problems, this is Hessian field M,-j[x] = ai_xj%(x)

possible
outliers bulk

Typical spectrum of the Hessians: oo o > 1
0
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With replicas, though.

Exponentially-large random quantities 4 ~ e? =P are typically not self-averaging.

E[log A E[A4"] — 1
s@ — fim 28EL 5@ — Jim SHO8A _ g BT
D—oo D D— oo D D— oo n—0 Dn

By convexity: T?W > 2@

Results (even rigorous) on annealed complexity via Kac-Rice:

Fyodorov 2006-2021
Ben Arous & Auffinger, K011-2021
Auffinger, Ben Arous, Cerny 2013 — Wainrib & Touboul 2013 — Fyodorov & Khoruzhenko 2016 — Ge & Ma 8017
Ipsen @ Forrester 2018 — DBen Arous, Mei, Montanari & Nica K019 — Maillard, Ben Arous, Biroli 2020
Ben Arous, Fyodorov, Khoruzhenko 2020
Lacroix-A-Chez-Toine & Fyodorov 2022
Lacroix-A-Chez-Toine, Fyodorov, Fedeli 2023

[...]

“Replicated Kac-Rice” for quenched complexity.

Three ingredients: isotropy (rotational symmetry), Gaussianity, concentration (of Hessian, e.g. pp(4))

VR, Ben Arous, Biroli, Cammarota — Physical Review X 9 (2019) /
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Gaussianity, Isotropy, Concentration.

E[A/™(P)] = J
MF" =1
Gaussianity

> All determined by covariances,
can be computed explicitly

a b
Ccab af,-(X( )) of; (X( ))
UM ox(@ ax;b )
J C

> (Can treat explicitly conditioning to
f@=0,0x2)=¢

— finite rank perturbations

HdX(a) @{X(a)} ({f(a) — 0}) [E{x(a)} H
= a=1

n

Isotropy

> Joint distributions depend only on

order parameters

Qab — D—l X(a) . X(b), mé = D—l X(a) .1

J ﬁdx(“) — [ ﬁ dQ®
M

D a=l1 a,b=1

» Invariant statistics of random

matrices: GOE, elliptic,...

of(x'¥
det< Jix )>
6xj(“)

)
XD(x@)=¢ H {f(“) = 0} ~ DX +o(D)

Concentration

> Low-rank perturbations do not

affect p(1)at leading order

supp[p(4)] — evalue density of M
V)
VFa(D) T
— >
—1 | %2

> Variational problem: self-
consistent equations for Q*, m*.

For more details: VR, Ben Arous, Biroli, Cammarota, Physical Review X 9 (2019) 14/23



Question 1: where are the unstable attractors?




Motivation: activated dynamics.

R /N Descent + aging at threshold

Saddles :

index ~ O(D) t>1 but t# OW)
Described by mean-field dynamical
equations

threshold / N4
Typically /N Activated dynamics: jumps
minima between minima, crossing barriers

<

\/ Tjump ™ 0(eP2¢), Ae = energy barrier
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Motivation: activated dynamics.

0, x,(t) = — 0;& ,(x) + () —0

/N Descent + aging at threshold

| Saddles
index ~ O(D) t>1 but t# OW)
Described by mean-field dynamical
equations
threshold / N
? Typically /N Activated dynamics: jumps
minima between minima, crossing barriers

V 7.~ 0(eP2¢), Ae = energy barrier

Jump

m Open problem: dynamical theory for activated regime

m Technically: “standard” mean-field description obtained taking

D — oo and then t = c0. Here we need ¢ ~ eP? - 0co: HARD!

Rizzo 2021

15/23



Trap models & beyond.

——  The Trap model paradigm m Dynamical approach. Beyond fully-connected: trap
model on random networks.
Random walk between e®" traps of random Margiotta, Kuhn, Sollich 2019 _
. . ’ D s — P. Sollich talk
depth via climbing up to fixed level Ernreshoid Tapias, Paprotzki, Sollich 2023
Bouchaud 1992
Dyre 1987 m Landscape approach. p-spin: a landscape with statistical

correlations. Which saddles can be used to escape from one

particular minimum?

E Threshold
=  Barriers: how high system needs to climb up 7 ~ e™VA¢
E V =  Connectivity: which part of conf. space accessible afterwards
E}' »  Dependence on energy of departing trap €,?

o Transition prob. P(E; » E)) e PFnF)

O Fully connected & renewal

Captures long-time dynamics (Metropolis) of

Random Energy Model — no

correlations in the landscape . ./ accessible saddle
minimum
Gayrard 2017 of energy ¢,
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energy

m Doubly-constrained complexity X,(e; g, €,) = lim 5
D—oo

The distribution of energy barriers.

(log -/Vk=1(€; q, €o)>

S S S ————r
_1156— p=3, €g=-1.167 ) ‘“‘:::—";0‘:"‘.—:::::. "y
— A
-1.158 - ¢ x=0 A,::A““AA‘.“‘....‘O.EI‘I‘./ .
UL e x=.0002 saaat
1160~ * x=.0009 sA ]
- ¢ x=.0015 ‘:2‘
1162 v _
L AA
7T
-1.164 - AK
L ‘:‘ evalue density
-1.166 - ‘:j‘ outlier A, bulk of Hessians |
wWe —— >4
-1.168 [i1x 0 _
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
q = S - SO

increasing distance to reference minimum

: index-1 saddles, in given region

./q' S - connected saddle

S( - reference minimum of energy ¢,
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The distribution of energy barriers.

(log /Vk=1(€; q, €o)>

m Doubly-constrained complexity X,(e; g, €,) = lim : index-1 saddles, in given region

D— oo D
__________________________________ B - T 1
r \-AAde B ou
-1.156 X p=3, €9=-1.167 N AAM“““:::“&Q::::II.,‘*:
L beooo
L & x=0 AAAA‘“AA‘ ..‘...'. =" _
- - AA (2 2 5
1.158 T ¢ x=.0002 A":::: ]
A 4
-1.160 - * x=.0009 R ::A ]
> - ¢ x=.0015 kA
o0 i AKX
o -1.162 - AX
g I AA _
) i A4
-1.164 - AKX ] ./q S - connected saddle
L ‘:A evalue density | - o
_1.166 - :ﬂ outlier 4. bulk of Hessians | S( - reference minimum of energy ¢,
L 4 |
Ll — — >
- ‘ —
~1.168 E:pr‘ 0
FIR S TR S TR T N TN SN N TR TN SN SN NN TR TR SO SR SN S

00 01 02 03 04 05 06 0.7
q =1S"-8

increasing distance to reference minimum

m Give access to statistics of energy barriers — distribution of escape times in activated dynamics

O Optimal barrier AE = D(e* — ¢,) is non-linear in €, — unlike Bouchaud trap-model
O Deepest minima have larger convex surrounding 1 — g*(¢,)

For details: VR, Biroli, Cammarota EPL 126 (2), 20005 (2019) VR, J Phys A: Math Theor 63 2020 17/23




Underlying RM problem: large deviations of top eigenpair.

m Issue: saddles are subleading: 2, j4ies < Zminima-

When targeting & counting saddles, need to condition
explicitly on unstable modes of Hessian.

p(A) — evalue density Hessian

so reference minimum, €,

m Joint large deviations of smallest Hessian eigenvalue &

projection of eigenvector u in direction € of reference

minimum u = |u - €|

|]:D(/lmin =4, Upin = u) = e_DG('L“)"'O(D)

\m‘IIN—l

For details: VR, J Phys A: Math Theor 53 2020

Ba

(v}
Mmy_o2N-1 )

a (v}
My _on—1 My_yN—1 T Ha
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Question 2: when there is no landscape?

p—spin with non conservative forces: Cugliandolo, Kurchan, Le Doussal, Peliti 1997



Motivation: dynamics of complex ecosystems.

rGLVE - random Generalized Lotka-Volterra equations arrying capacity k; ( = x )

x(f) = abundance of species i = 1,--, D > Self-regulation (quadratic term)

> Random pairwise interactions

dx;(t)
dt

u o
(a;) = D Var (%’“kl) ) <5ik5jl +7 5i15jk)

D
= x(0) | = x(0) = ) azx ()

j=1

Fyodorov, Khoruzhenko 2016 Bunin 8017  Galla 2018
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Motivation: dynamics of complex ecosystems.

> Carrying capacity k; (= k = 1)

rGLVE - random Generalized Lotka-Volterra equations

> Self-regulation (quadratic term)

> Random pairwise interactions

2

U o
(o) = D Var <aijakl> =7 <5ik5jz +y 5iz5jk)
Fyodorov, Khoruzhenko 8016 ~ Bunin 2017  Galla 2018
7 . 1059 Dynamics o small
' ilibri = leger
Multiple equilibria for ¢ > o, . g g Simulations by F. Roy, 2019
0.8
é 0.6 .
m Symmetric interactions (y = 1) is a spin 2 ——— Dynamics o large
504
glass model: dynamics approaches marginally - Ny i unstable
stable minima .| || equilibrium?
0.0 =
Biroli, Bunin, Cammarota 2018 N 2
me az-
&
N
m Asymmetric interactions (y < 1) : properties of
N
equilibria? Which attract dynamics, if any? Arnoulx de Pirey, Bunin 2023 0 100 200 30 400 50

Time 19/23



JILIANG HU

Well-mixed ecosystems in the lab.

Emergent phases of ecological diversity and dynamics

mapped in microcosms

, DANIEL R. AMOR , MATTHIEU BARBIER , GUY BUNIN

A
S species from a pool of
48 bacterial isolates
%)
‘i: ¢ ”; o
QAR Inoculate
2 0%) g€
S=48
/ | oW nutrient l Ow nutrient Medium nutrient High nutrient \
203/® I
=
-§ 0.6 .I
204 n
02 'Ii= il I“
& [
0
0 5 10 0 5 10
Time (days)
‘Q"é 1 . | | I
= 2 I I | I | I
2 3 I I | N | I |
0 0.5 1 0 0.5 1 0 0.5 1
Relative abundance
\_ on day 10 J

>

© o o o
o N OB~ OO

-—

Survival fraction

, AND JEFF GORE

Authors Info & Affiliations

Measurements
16S rRNA
amplicon

sequencing

Biomass

12

o
o

7

o
»

Fraction of a. > 1
o
N

0 A

Interaction strength

4

Low Medium High
Nutrient concentrations

: {f
High nutrient

Medium nutrient -

Low nutrient

24 48

Size of species pool, S

Knobs: community
size S and average

strength u

— Diversity ¢
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Multiple equilibria phase: diversities, (in)stability. Chaos?

log #(¢, l
B X(¢p,0) = lim (log D(d) ) complexity of equilibria at fixed diversity ¢ = 5 Z Lissg
i=1

D—oo

m Give range of diversity accessible for dynamics < not fixed by marginality as for y =1

m All equilibria are unstable: no marginality — chaotic dynamics, positive Lyapunov?

Sompolinsky, Crisanti, Sommers 1988
Wainrib, Toboul 2013

Blumenthal, Rocks, Mehta 2083

For details: VR, Roy, Biroli, Bunin & Turner, PRL 130, 257401 (2083)
VR, Roy, Biroli, Bunin, J. Phys. A 66, 305008 (2023)

General y:  ongoing (with A. Pacco) 21/23




Back to “standard” counting: a comparison

Em

00015 I 7=1, o=1 o
: ® KR annealed -
[ = ]|RSB - stable ~
0.0010F 4 1RSB - unstable :
S [
N k |
0.0005 - |
k " Monasson
b S
0.0000F =

¢1RSB: 02494

estimate of diversity at the GS

(fullRSB needed)
For details: VR, Roy, Biroli, Bunin & Turner, PRL 130, 257401 (2083)

VR, Roy, Biroli, Bunin, J. Phys. A 66, 3056005 (8023)
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Summary.

B Multiple competing dynamical attractors/stationary

points is key feature of complex (glassy) systems. A review:

VR, Fyodorov — The high-d landscapes paradigm: spin-
B Characterizing their distribution is relevant for: glasses, and beyond (R083)

— dynamics beyond mean-field (activated)

— chaos (instability) vs aging (marginality).... Saddles & activation:

VR — Distribution of rare saddles in the p-spin energdy
landscape (2020)

VR, Biroli, Cammarota — Complexity of energy
barriers in mean-field glassy systems (2019)

1. Count 2. Classify
Ecosystems equilibria:
configuration space . . . X
S VR, Roy, Biroli, Bunin, Turner — Generalized Lotka-
Volterra equations with random, non-reciprocal
3. Link to dynamics interactions: the typical number of equilibria (2023)

VR, Roy, Biroli, Bunin — Quenched complexity of
equilibria for asymmetric Generalized Lotka-Volterra

B Recent formalism (Kac-Rice) lead to interesting equations (sUd)

problems in Random Matrix Theory.
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0.010+ -
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.........
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7=0’ 0-=2 . .’ Te
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0.06 -
0.04 -
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