

Disordered Systems Days at KCL King's College, London — September 2023 Valentina Ros, LPTMS Orsay

Counting equilibria in high-D random systems: from Gaussian landscapes to random ecosystems

An introduction

Dynamics in high-D: many competing equilibria.

Glasses, proteins, ecosystems (microbiome), neural networks, financial markets: many components interacting in eterogeneous (\rightarrow random) way

- ▶ Configuration: $\mathbf{x} = (x_1, \dots, x_D) \in \mathcal{M}_D, D \gg 1$
- Dynamics: $\partial_t x_i(t) = f_i(\mathbf{x}(t), \hat{a}) + \eta_i(t)$ \hat{a}

 \hat{a} randomness $\langle \eta^2(t)\rangle\propto\beta^{-1}$

Equilibria x*:
$$\partial_t x_i^* = f_i(\mathbf{x}^*, \hat{a}) = 0$$
 for all i

Dynamics in high-D: many competing equilibria.

Glasses, proteins, ecosystems (microbiome), neural networks, financial markets: many components interacting in eterogeneous (\rightarrow random) way

- ▶ Configuration: $\mathbf{x} = (x_1, \dots, x_D) \in \mathcal{M}_D, D \gg 1$
- Dynamics: $\partial_t x_i(t) = f_i(\mathbf{x}(t), \hat{a}) + \eta_i(t)$

 \hat{a} randomness $\left< \eta^2(t) \right> \propto \beta^{-1}$

Equilibria x*: $\partial_t x_i^* = f_i(\mathbf{x}^*, \hat{a}) = 0$ for all i

(1) High-D & eterogeneous interactions produce "glassiness": huge number $\mathcal{N} \sim e^{D\Sigma}$ of competing, very different equilibria [Σ = "complexity"]

different equilibria with same diversity

(2) Dynamics with many attractors can be complex: slow (aging), chaotic, intermittent, with avalanches, activated...

Purpose: understand this dynamics quantitatively.

Approach: count & classify all equilibria as a function of "typical" properties (e.g. stability). Statistics.

A long history in the field of glasses & spin glasses:

The optimization paradigm...

Conservative problems: $\partial_t x_i = f_i(\mathbf{x}, \hat{\alpha}) = -\partial_{x_i} \mathscr{E}(\mathbf{x}, \hat{\alpha})$ Equilibria are stationary points of **high-***D* **landscape** $\mathscr{E}(\mathbf{x}, \hat{\alpha})$.

- Fitness landscapes in evolutionary biology Park, Hwang, Krug JPhysA 53 (2020) [....]
- Loss landscapes in machine (supervised) learning Baskerville et al JPhysA 55 (2022) [....]
- Cost landscapes in inference & constraint satisfaction
 Fedeli, Fyodorov JSP 175 (2019) [....]
- **Energy landscapes** in condensed/soft matter, e.g.

$$\mathbf{x} \text{ conf of particles/spins, } \mathcal{M}_D \text{ sphere, } \sum_{i=1}^D x_i^2 = D$$
$$\mathscr{E}(\mathbf{x}, \hat{\alpha}) = \sum_{p=2}^\infty \sum_{i_1, \dots, i_p} a_{i_1 \cdots i_p}^{(p)} x_{i_1} \cdots x_{i_p}, \text{ with } a_{i_1 \cdots i_p}^{(p)} \text{ random}$$

"spherical *p*-spin models" ← effective model structural glasses Kirkpatrick, Thirumalai, Wolynes 1989 Crisanti, Sommers 1992

...and beyond: non-reciprocity.

Non-conservative problems: $\partial_t x_i = f_i(\mathbf{x}, \hat{\alpha}) \neq \partial_i \mathscr{E}$, because of **non-reciprocal (asymmetric) interactions.**

- Interacting neurons in neuroscience Sompolinski, Crisanti, Sommers 1988 [....]
- Interacting firms (or traders, or banks)
 Moran, Bouchaud 2019 [....]
- Gene-regulatory networks
 A. Annibale talk
- ▶ **Interacting species** in ecology, e.g.

x species abundance,
$$\mathcal{M}_D = \mathbb{R}^D_+$$

$$f_i(\mathbf{x}, \hat{\alpha}) = x_i \left(\kappa_i - x_i - \sum_j a_{ij} x_j \right), \text{ with } a_{ij} \neq a_{ji}$$

"Generalized random Lotka-Volterra equations" May 1972

The program.

2. Classify

How many at a given height, or with fixed fraction of $x_i > c$? Which are stable or unstable? Distribution and connectivity in configuration space?

3. Link to dynamics

Which attractors trap system at shorter times? At longer times? Most probable dynamical paths? Aging, activated jumps, chaos?

An example & two questions

Configuration space
$$\mathcal{M}_D$$
: sphere $\sum_{i=1}^D x_i^2 = D$
Gaussian landscape $\mathcal{C}_p(\mathbf{x}) = \sum_{i_1, \dots, i_p} a_{i_1 \dots i_p} x_{i_1} \dots x_{i_p} \quad p \ge 3$
Isotropic correlations: $\left\langle \mathcal{C}_p(\mathbf{x}) \mathcal{C}_p(\mathbf{x}') \right\rangle = \frac{D}{2} \left(\frac{\mathbf{x} \cdot \mathbf{x}'}{D} \right)^p$

Configuration space \mathcal{M}_D : sphere $\sum_{i=1}^D x_i^2 = D$ Gaussian landscape $\mathscr{C}_p(\mathbf{x}) = \sum_{i_1, \dots, i_p} a_{i_1 \dots i_p} x_{i_1} \dots x_{i_p} \qquad p \ge 3$ Isotropic correlations: $\left\langle \mathscr{C}_p(\mathbf{x}) \mathscr{C}_p(\mathbf{x}') \right\rangle = \frac{D}{2} \left(\frac{\mathbf{x} \cdot \mathbf{x}'}{D} \right)^p$

■ Count & classify

$$\begin{split} \mathcal{N}_k(\epsilon) &= \text{number of equilibria } \mathbf{x}^* \text{ at } \mathcal{E} = D \ \epsilon. \\ \text{Quenched complexity } \Sigma_k(\epsilon) &= \lim_{D \to \infty} \frac{\langle \log \mathcal{N}_k(\epsilon) \rangle}{D} \end{split}$$

Cavagna, Giardina, Parisi 1998 Auffinger, Ben Arous, Cerny 2013

Link to dynamics

"Short-time" dynamics $t \sim O(D^0)$ approaches asymptotically the threshold energy [marginally stable minima] and ages To explore bottom of the landscape (and eventually equilibrate) need $t(D) \sim O(e^D)$: jumps between stable minima.

"Short-time" dynamics $t \sim O(D^0)$ approaches asymptotically the threshold energy [marginally stable minima] and ages To explore bottom of the landscape (and eventually equilibrate) need $t(D) \sim O(e^D)$: jumps between stable minima.

This talk: two questions.

- Where are unstable attractors, i.e. the saddles?
- What happens when the landscape picture breaks down?

This talk: outline.

- Beyond "standard" landscape-based tools
- **Direct counting, & how random matrix theory helps**
- **The two questions: why relevant, what we can say about them**

"Standard" tools & more recent inputs

"Standard" glassy counting techniques.

Standard recipes involve "tweaked" equilibrium calculations [~ large deviations]

Franz and Parisi 1995 Monasson 1995

Thermodynamics: $\mathscr{Z}_{\beta} = \int dx e^{-\beta \mathscr{E}(x)}$

When $\beta \to \infty$, selects deepest minima (GS).

How to pick up & count the $\mathcal{N} \sim e^{D\Sigma}$ local minima (metastable states)?

"Standard" glassy counting techniques.

Standard recipes involve "tweaked" equilibrium calculations [~ large deviations]

Franz and Parisi 1995 Monasson 1995

Thermodynamics: $\mathcal{Z}_{\beta} = \int dx e^{-\beta \mathcal{E}(x)}$

When $\beta \to \infty$, selects deepest minima (GS).

How to pick up & count the $\mathcal{N} \sim e^{D\Sigma}$ local minima (metastable states)?

The Monasson method

Free energy of m weakly coupled "real replicas"

$$F(m,\beta) = \lim_{D \to \infty, \epsilon \to 0} D^{-1} \left\langle \log \left[\int_{k=1}^{m} dx^{(i)} e^{-\beta \sum_{k} \mathcal{E}(x^{(k)}) + \epsilon \sum_{kl} x^{(k)} x^{(l)}} \right] \right\rangle$$

Related to number of metastable states by Legandre transform: $F(m,\beta) \sim fm - \beta^{-1}D^{-1}\log \mathcal{N}(f,\beta)$

Reconstruct parametrically the complexity Σ :

$$f = \partial_m F(m, \beta)$$
 $\Sigma = D^{-1} \log \mathcal{N} = m^2 \partial_m \left(\frac{\beta F(m, \beta)}{m} \right)$

(Take $\beta \to \infty$ at the end: free energy $f \to \text{energy } \epsilon$)

Developments: Mueller, Leuzzi, Crisanti 2006

"Standard" glassy counting techniques very insightfull.

however:

1. Need a potential function/ energy landscape.

2. Pick up stable (marginally) stationary points, i.e. local minima.

Another approach: Kac-Rice formula(s).

Number $\mathcal{N}(\phi)$ of equilibria \mathbf{x}^* such that $f(\mathbf{x}^*) = (-\nabla \mathscr{E}(\mathbf{x}^*)) = 0$ and $\Phi(\mathbf{x}^*) = \phi$ (arbitrary constraints) Random variable with scaling: $\mathcal{N}(\phi) \sim e^{D \Sigma(\phi) + o(D)}$.

"Kac-Rice formula": recipe to compute moments of $\mathcal{N}(\phi)$

$$\mathbb{E}[\mathcal{N}(\phi)] = \int_{\mathcal{M}_D} d\mathbf{x} \,\mathcal{P}_{\mathbf{x}}\left(\mathbf{f} = \mathbf{0}\right) \mathbb{E}_{\mathbf{x}}\left[\left|\det\left(\frac{\partial f_i(\mathbf{x})}{\partial x_j}\right)\right| \chi_{\Phi(\mathbf{x})=\phi} \right\| \mathbf{f} = \mathbf{0}\right]$$

Higher moments:

$$\mathbb{E}[\mathcal{N}^{n}(\phi)] = \int_{\mathcal{M}_{D}^{\otimes n}} \prod_{m=1}^{n} d\mathbf{x}^{(m)} \mathcal{P}_{\{\mathbf{x}^{(m)}\}}\left(\left\{\mathbf{f}^{(m)} = \mathbf{0}\right\}\right) \mathbb{E}_{\{\mathbf{x}^{(m)}\}}\left[\prod_{m=1}^{n} \left|\det\left(\frac{\partial f_{i}(\mathbf{x}^{(m)})}{\partial x_{j}^{(m)}}\right)\right| \chi_{\Phi(\mathbf{x}^{(m)}) = \phi} \right\| \left\{\mathbf{f}^{(m)} = \mathbf{0}\right\}\right]$$

Another approach: Kac-Rice formula(s).

Number $\mathcal{N}(\phi)$ of equilibria \mathbf{x}^* such that $f(\mathbf{x}^*) = (-\nabla \mathscr{E}(\mathbf{x}^*)) = 0$ and $\Phi(\mathbf{x}^*) = \phi$ (arbitrary constraints) Random variable with scaling: $\mathcal{N}(\phi) \sim e^{D \Sigma(\phi) + o(D)}$.

"Kac-Rice formula": recipe to compute moments of $\mathcal{N}(\phi)$

$$\mathbb{E}[\mathcal{N}(\phi)] = \int_{\mathcal{M}_D} d\mathbf{x} \,\mathcal{P}_{\mathbf{x}}\left(\mathbf{f} = \mathbf{0}\right) \mathbb{E}_{\mathbf{x}}\left[\left|\det\left(\frac{\partial f_i(\mathbf{x})}{\partial x_j}\right)\right| \chi_{\Phi(\mathbf{x})=\phi} \right\| \mathbf{f} = \mathbf{0}\right]$$

Higher moments:

$$\mathbb{E}[\mathcal{N}^{n}(\phi)] = \int_{\mathcal{M}_{D}^{\otimes n}} \prod_{m=1}^{n} d\mathbf{x}^{(m)} \mathcal{P}_{\{\mathbf{x}^{(m)}\}} \left(\left\{ \mathbf{f}^{(m)} = \mathbf{0} \right\} \right) \mathbb{E}_{\{\mathbf{x}^{(m)}\}} \left[\prod_{m=1}^{n} \left| \det\left(\frac{\partial f_{i}(\mathbf{x}^{(m)})}{\partial x_{j}^{(m)}}\right) \right| \chi_{\Phi(\mathbf{x}^{(m)}) = \phi} \right\| \left\{ \mathbf{f}^{(m)} = \mathbf{0} \right\} \right]$$

Complexity via replica trick:
$$\Sigma(\phi) = \lim_{D \to \infty} \frac{\mathbb{E}[\log \mathcal{N}(\phi)]}{D} = \lim_{D \to \infty} \lim_{n \to 0} \frac{\mathbb{E}[\mathcal{N}^n] - 1}{Dn}$$

The recent input: Random Matrix Theory tooolbox.

$$\mathbb{E}[\mathcal{N}^{n}(\phi)] = \int_{\mathcal{M}_{D}^{\otimes n}} \prod_{m=1}^{n} d\mathbf{x}^{(m)} \mathscr{P}_{\{\mathbf{x}^{(m)}\}} \left(\left\{ \mathbf{f}^{(m)} = \mathbf{0} \right\} \right) \mathbb{E}_{\{\mathbf{x}^{(m)}\}} \left[\prod_{m=1}^{n} \left| \det\left(\frac{\partial f_{i}(\mathbf{x}^{(m)})}{\partial x_{j}^{(m)}}\right) \right| \chi_{\Phi(\mathbf{x}^{(m)}) = \phi} \| \left\{ \mathbf{f}^{(m)} = \mathbf{0} \right\} \right] \sim e^{D\Sigma^{(n)} + o(D)}$$

Since forces $f_i(\mathbf{x})$ are random, need to control random matrix field $\hat{M}_{ij}[\mathbf{x}] = \frac{\partial f_i(\mathbf{x})}{\partial x_j}$ Fyodorov (2004)

Problem of coupled, conditioned random matrices

■ Gaussian fields: can characterize the whole conditional distribution of matrix field: GOE, weakly deformed by conditioning (\rightarrow finite rank perturbations)

The recent input: Random Matrix Theory tooolbox.

$$\mathbb{E}[\mathcal{N}^{n}(\phi)] = \int_{\mathcal{M}_{D}^{\otimes n}} \prod_{m=1}^{n} d\mathbf{x}^{(m)} \mathscr{P}_{\{\mathbf{x}^{(m)}\}} \left(\left\{ \mathbf{f}^{(m)} = \mathbf{0} \right\} \right) \mathbb{E}_{\{\mathbf{x}^{(m)}\}} \left[\prod_{m=1}^{n} \left| \det\left(\frac{\partial f_{i}(\mathbf{x}^{(m)})}{\partial x_{j}^{(m)}}\right) \right| \chi_{\Phi(\mathbf{x}^{(m)}) = \phi} \| \left\{ \mathbf{f}^{(m)} = \mathbf{0} \right\} \right] \sim e^{D\Sigma^{(n)} + o(D)}$$

Since forces $f_i(\mathbf{x})$ are random, need to control random matrix field $\hat{M}_{ij}[\mathbf{x}] = \frac{\partial f_i(\mathbf{x})}{\partial x_j}$ Fyodorov (2004)

Problem of coupled, conditioned random matrices

Gaussian fields: can characterize the whole conditional distribution of matrix field: GOE, weakly deformed by conditioning (\rightarrow finite rank perturbations)

Stability of equilibria is encoded in the spectrum of matrices. For conservative problems, this is Hessian field $\hat{M}_{ij}[\mathbf{x}] = \partial_{x_i x_j}^2 \mathscr{E}(\mathbf{x})$

Typical spectrum of the Hessians:

With replicas, though.

Exponentially-large random quantities $\mathcal{N} \sim e^{D\Sigma_D + o(D)}$ are typically **not self-averaging.**

$$\Sigma^{(A)} = \lim_{D \to \infty} \frac{\log \mathbb{E}[\mathcal{N}]}{D} \qquad \qquad \Sigma^{(Q)} = \lim_{D \to \infty} \frac{\mathbb{E}[\log \mathcal{N}]}{D} = \lim_{D \to \infty} \lim_{n \to 0} \frac{\mathbb{E}[\mathcal{N}^n] - 1}{Dn}$$
By convexity: $\Sigma^{(A)} \ge \Sigma^{(Q)}$

Results (even rigorous) on annealed complexity via Kac-Rice:

Fyodorov 2005-2021 Ben Arous & Auffinger, 2011-2021 Auffinger, Ben Arous, Černý 2013 – Wainrib & Touboul 2013 – Fyodorov & Khoruzhenko 2016 – Ge & Ma 2017 Ipsen & Forrester 2018 – Ben Arous, Mei, Montanari & Nica 2019 – Maillard, Ben Arous, Biroli 2020 Ben Arous, Fyodorov, Khoruzhenko 2020 Lacroix-A-Chez-Toine & Fyodorov 2022 Lacroix-A-Chez-Toine, Fyodorov, Fedeli 2023 [...]

"Replicated Kac-Rice" for quenched complexity.

Three ingredients: isotropy (rotational symmetry), Gaussianity, concentration (of Hessian, e.g. $\rho_D(\lambda)$)

VR, Ben Arous, Biroli, Cammarota – Physical Review X 9 (2019)

Gaussianity, Isotropy, Concentration.

$$\mathbb{E}[\mathcal{N}^{n}(\phi)] = \int_{\mathcal{M}_{D}^{\otimes n}} \prod_{a=1}^{n} d\mathbf{x}^{(a)} \mathcal{P}_{\{\mathbf{x}^{(a)}\}}\left(\left\{\mathbf{f}^{(a)} = \mathbf{0}\right\}\right) \mathbb{E}_{\{\mathbf{x}^{(a)}\}}\left[\prod_{a=1}^{n} \left|\det\left(\frac{\partial f_{i}(\mathbf{x}^{(a)})}{\partial x_{j}^{(a)}}\right)\right| \chi_{\Phi(\mathbf{x}^{(a)})=\phi} \right\| \left\{\mathbf{f}^{(a)} = \mathbf{0}\right\}\right] \sim e^{D\Sigma^{(n)}+o(D)}$$

 All determined by covariances, can be computed explicitly

$$C_{ij,kl}^{ab} = \left\langle \frac{\partial f_i(\mathbf{x}^{(a)})}{\partial x_j^{(a)}} \frac{\partial f_k(\mathbf{x}^{(b)})}{\partial x_l^{(b)}} \right\rangle_c$$

- Can treat explicitly conditioning to $\mathbf{f}^{(a)} = \mathbf{0}, \Phi(\mathbf{x}^{(a)}) = \phi$
 - \rightarrow finite rank perturbations

Isotropy

 Joint distributions depend only on order parameters

$$Q^{ab} = D^{-1} \mathbf{x}^{(a)} \cdot \mathbf{x}^{(b)}, \quad m^a = D^{-1} \mathbf{x}^{(a)} \cdot \mathbf{1}$$

$$\int_{\mathcal{M}_D^{\otimes n}} \prod_{a=1}^n d\mathbf{x}^{(a)} \to \int \prod_{a,b=1}^n dQ^{ab}$$

 Invariant statistics of random matrices: GOE, elliptic,...

Concentration

• Low-rank perturbations do not affect $\rho(\lambda)$ at leading order

$$\operatorname{supp}[\rho(\lambda)]$$
 — evalue density of M

$$\sqrt{\phi\sigma(1+\gamma)}$$

• Variational problem: selfconsistent equations for Q^{ab}, m^a .

For more details: VR, Ben Arous, Biroli, Cammarota, Physical Review X 9 (2019)

Question 1: where are the unstable attractors?

Motivation: activated dynamics.

Motivation: activated dynamics.

Trap models & beyond.

The Trap model paradigm

Random walk between $e^{\alpha N}$ traps of random depth via climbing up to fixed level $E_{Threshold}$ Bouchaud 1992

Dyre 1987

- \circ Transition prob. $P(E_i \rightarrow E_j) \propto e^{-\beta(E_{Th}-E_i)}$
- Fully connected & renewal

Captures long-time dynamics (Metropolis) of Random Energy Model — no correlations in the landscape

Gayrard 2017

Dynamical approach. Beyond fully-connected: trap model on random networks.

Margiotta, Kuhn, Sollich 2019 Tapias, Paprotzki, Sollich 2023

 \rightarrow P. Sollich talk

■ Landscape approach. *p*-spin: a landscape with statistical correlations. Which saddles can be used to escape from one particular minimum?

- Barriers: how high system needs to climb up $\tau \sim e^{N\Delta\epsilon}$
- Connectivity: which part of conf. space accessible afterwards
- Dependence on energy of departing trap ϵ_0 ?

The distribution of energy barriers.

 $\blacksquare \text{ Doubly-constrained complexity } \Sigma_1(\epsilon;q,\epsilon_0) = \lim_{D \to \infty} \frac{\langle \log \mathcal{N}_{k=1}(\epsilon;q,\epsilon_0) \rangle}{D}: \text{ index-1 saddles, in given region}$ -1.156 p=3, $\epsilon_0 = -1.167$ x=0 -1.158 • x=.0002 -1.160 x=.0009 energy x=.0015 -1.162 connected saddles -1.164 S - connected saddle q evalue density \mathbf{S}_0 - reference minimum of energy ϵ_0 -1.166 outlier λ_{iso} of Hessians bulk → *λ* -1.168 0 0.2 0.1 0.3 0.4 0.5 0.7 0.0 0.6 $q = \mathbf{s} \cdot \mathbf{s}_0$ increasing distance to reference minimum

The distribution of energy barriers.

 $\blacksquare Give access to statistics of energy barriers \rightarrow distribution of escape times in activated dynamics$

- $^{\circ}$ Optimal barrier $\Delta E=D(\epsilon^{*}-\epsilon_{0})$ is non-linear in ϵ_{0} unlike Bouchaud trap-model
- $^{\circ}$ Deepest minima have larger convex surrounding $1-q^{*}(\epsilon_{0})$

Underlying RM problem: large deviations of top eigenpair.

■ Issue: saddles are subleading: $\Sigma_{\text{saddles}} < \Sigma_{\text{minima}}$. When targeting & counting saddles, need to condition explicitly on **unstable modes of Hessian**.

 \mathbf{s}_0 reference minimum, ϵ_0

■ Joint large deviations of smallest Hessian eigenvalue & projection of eigenvector **u** in direction $\hat{\mathbf{e}}$ of reference minimum $u = |\mathbf{u} \cdot \hat{\mathbf{e}}|$

$$\mathbb{P}(\lambda_{\min} = \lambda, u_{\min} = u) = e^{-DG(\lambda, u) + o(D)}$$

Question 2: when there is no landscape?

p-spin with non conservative forces: Cugliandolo, Kurchan, Le Doussal, Peliti 1997

Motivation: dynamics of complex ecosystems.

rGLVE - random Generalized Lotka-Volterra equations

 $x_i(t) = \text{abundance of species } i = 1, \cdots, D$

$$\frac{dx_i(t)}{dt} = x_i(t) \left(\kappa_i - x_i(t) - \sum_{j=1}^D \alpha_{ij} x_j(t) \right)$$

Fyodorov, Khoruzhenko 2016 Bunin 2017

Galla 2018

- Carrying capacity $\kappa_i (\equiv \kappa = 1)$
- Self-regulation (quadratic term)
- Random pairwise interactions

$$\langle \alpha_{ij} \rangle = \frac{\mu}{D}$$
 $\operatorname{Var}\left(\alpha_{ij}\alpha_{kl}\right) = \frac{\sigma^2}{D}\left(\delta_{ik}\delta_{jl} + \gamma \ \delta_{il}\delta_{jk}\right)$

Motivation: dynamics of complex ecosystems.

 \mathbf{rGLVE} - random Generalized Lotka-Volterra equations

 $x_i(t) = \text{abundance of species } i = 1, \cdots, D$

$$\frac{dx_i(t)}{dt} = x_i(t) \left(\kappa_i - x_i(t) - \sum_{j=1}^D \alpha_{ij} x_j(t) \right)$$

Fyodorov, Khoruzhenko 2016

Bunin 2017 Galla 2018

- Carrying capacity $\kappa_i \ (\equiv \kappa = 1)$
- ▶ Self-regulation (quadratic term)
- Random pairwise interactions

$$\langle \alpha_{ij} \rangle = \frac{\mu}{D}$$
 $\operatorname{Var}\left(\alpha_{ij}\alpha_{kl}\right) = \frac{\sigma^2}{D}\left(\delta_{ik}\delta_{jl} + \gamma \ \delta_{il}\delta_{jk}\right)$

Multiple equilibria for
$$\sigma > \sigma_c = \frac{\sqrt{2}}{1+\gamma}$$
. Rieger 1989

Symmetric interactions $(\gamma = 1)$ is a spin glass model: dynamics approaches marginally stable minima

Biroli, Bunin, Cammarota 2018

Asymmetric interactions ($\gamma < 1$) : properties of equilibria? Which attract dynamics, if any? Arnoulx de Pirey, Bunin 2023

Well-mixed ecosystems in the lab.

Emergent phases of ecological diversity and dynamics mapped in microcosms

Multiple equilibria phase: diversities, (in)stability. Chaos?

$$\Sigma(\phi, \sigma) = \lim_{D \to \infty} \frac{\langle \log \mathcal{N}(\phi, \sigma) \rangle}{D}$$
 complexity of equilibria at fixed diversity $\phi = \frac{1}{D} \sum_{i=1}^{D} \mathbf{1}_{x_i^* > 0}$

■ Give range of diversity accessible for dynamics \leftarrow not fixed by marginality as for $\gamma = 1$

 \blacksquare All equilibria are unstable: no marginality \rightarrow chaotic dynamics, positive Lyapunov?

Sompolinsky, Crisanti, Sommers 1988 Wainrib, Toboul 2013 Blumenthal, Rocks, Mehta 2023

- For details:VR, Roy, Biroli, Bunin & Turner, PRL 130, 257401 (2023)VR, Roy, Biroli, Bunin, J. Phys. A 56, 305003 (2023)
- <u>General γ</u>: ongoing (with A. Pacco)

Back to "standard" counting: a comparison

VR, Roy, Biroli, Bunin, J. Phys. A 56, 305003 (2023)

Summary.

■ Multiple competing dynamical attractors/stationary points is key feature of complex (glassy) systems.

- Characterizing their distribution is relevant for:
- \rightarrow dynamics beyond mean-field (activated)
- \rightarrow chaos (instability) vs aging (marginality)....

■ Recent formalism (Kac-Rice) lead to interesting problems in **Random Matrix Theory.**

A review:

VR, Fyodorov – The high-d landscapes paradigm: spinglasses, and beyond (2023)

Saddles & activation:

VR – Distribution of rare saddles in the p-spin energy landscape (2020)

VR, Biroli, Cammarota – Complexity of energy barriers in mean-field glassy systems (2019)

Ecosystems equilibria:

VR, Roy, Biroli, Bunin, Turner – Generalized Lotka-Volterra equations with random, non-reciprocal interactions: the typical number of equilibria (2023)

VR, Roy, Biroli, Bunin – Quenched complexity of equilibria for asymmetric Generalized Lotka-Volterra equations (2023)

