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An introduction
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‣  Dynamics:   ∂t xi(t) = fi(x(t), ̂a) + ηi(t)

Glasses, proteins, ecosystems (microbiome), neural 
networks, financial markets: many components 
interacting in eterogeneous (  random) way→

‣  Configuration: ,     x = (x1, ⋯, xD) ∈ ℳD D ≫ 1

Equilibria :    for all x* ∂t x*i = fi(x*, ̂a) = 0 i

Dynamics in high-D: many competing equilibria.

⟨η2(t)⟩ ∝ β−1
 randomnesŝa
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‣  Dynamics:  ∂t xi(t) = fi(x(t), ̂a) + ηi(t)

Glasses, proteins, ecosystems (microbiome), neural 
networks, financial markets: many components 
interacting in eterogeneous (  random) way→

‣  Configuration: ,     x = (x1, ⋯, xD) ∈ ℳD D ≫ 1

Equilibria :    for all x* ∂t x*i = fi(x*, ̂a) = 0 i

(1) High-D & eterogeneous interactions produce 
“glassiness”: huge number   of competing, 
very different equilibria [ = “complexity”]

𝒩 ∼ eDΣ

Σ

Dynamics in high-D: many competing equilibria.

(2) Dynamics with many attractors can be 
complex: slow (aging), chaotic, intermittent, 
with avalanches, activated…

different equilibria with same diversity

⟨η2(t)⟩ ∝ β−1
 randomnesŝa



Purpose: understand this dynamics quantitatively.  

Approach: count & classify all equilibria as a function of “typical” 
properties (e.g. stability). Statistics.

A long history in the field of glasses  & spin glasses: 
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https://dissyskcl.github.io/news/rsb40/



  ∂t xi(t) = fi(x(t), ̂a)

[x]ℰ

 of dimension ℳD D ≫ 1

x

t=0

Conservative problems:   
Equilibria are stationary points of  high-D 
landscape .

∂txi = fi(x, α̂) = − ∂xi
ℰ(x, α̂)

ℰ(x, ̂a)

‣ Fitness landscapes in evolutionary biology

The optimization paradigm…

‣ Energy landscapes in condensed/soft matter, e.g.

  conf of particles/spins,  sphere,   x ℳD

D

∑
i=1

x2
i = D

 ,    with  randomℰ(x, α̂) =
∞

∑
p=2

∑
i1,⋯,ip

a(p)
i1⋯ip

xi1⋯xip a(p)
i1⋯ip

“spherical p-spin models”  effective model structural glasses←

‣ Loss landscapes in machine (supervised) learning

‣ Cost landscapes in inference & constraint satisfaction
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Kirkpatrick, Thirumalai, Wolynes 1989 

Fedeli, Fyodorov JSP 175 (2019)

Park, Hwang, Krug JPhysA 53 (2020)

Baskerville et al JPhysA 55  (2022)

 Crisanti, Sommers 1992

[….]

[….]

[….]



‣ Interacting neurons in neuroscience

Non-conservative problems: , 
because of  non-reciprocal (asymmetric) 
interactions. 

∂txi = fi(x, α̂) ≠ ∂iℰ

aji

aij ‣ Interacting species in ecology, e.g.

  species abundance,   x ℳD = ℝD
+

 ,  with fi(x, α̂) = xi κi − xi − ∑
j

aijxj aij ≠ aji

“Generalized random Lotka-Volterra equations”

…and beyond: non-reciprocity.

species-species interactions
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May 1972 

Sompolinski, Crisanti, Sommers 1988 [….]

‣ Interacting firms (or traders, or banks) 
 Moran, Bouchaud 2019 [….]

 A. Annibale talk→
‣ Gene-regulatory networks



Glassiness or not? 
“Topology trivialization”  transitions?

How many at a given height, 
or with fixed fraction of ? 
Which are stable or unstable? 

Distribution and connectivity in  
configuration space? 

xi > c

Which attractors trap system at shorter times? At 
longer times? Most probable dynamical paths? 

 Aging, activated jumps, chaos?

1. Count 2. Classify

3. Link to dynamics

configuration space  ℳD

height

control parameter

The program.
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An example & two questions



 Configuration space :  sphere ℳD

D

∑
i=1

x2
i = D

 Gaussian landscape    ℰp(x) = ∑
i1,⋯,ip

ai1⋯ip xi1⋯xip

⟨ℰp(x) ℰp(x′ )⟩ =
D
2 ( x ⋅ x′ 

D )
p

Isotropic correlations:
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Simple Gaussian landscapes.

p ≥ 3



 Configuration space :  sphere ℳD

D

∑
i=1

x2
i = D

 Gaussian landscape    ℰp(x) = ∑
i1,⋯,ip

ai1⋯ip xi1⋯xip

 number of equilibria  at = D .  

 Quenched complexity 

𝒩k(ϵ) = x* ℰ ϵ

Σk(ϵ) = lim
D→∞

⟨log 𝒩k(ϵ)⟩
D

 Count & classify◼
ℰ = Dϵ

Σ k
(ϵ

)

exponentially-many minima  
& low-index saddles

high-index  
saddles k ∝ D

Threshold - marginal stability

Cavagna, Giardina, Parisi 1998  
Auffinger, Ben Arous, Cerny 2013

Simple Gaussian landscapes.

p ≥ 3
λ

ρ(λ)

0

Hessian  
at threshold
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 Configuration space :  sphere ℳD

D

∑
i=1

x2
i = D

 Gaussian landscape    ℰp(x) = ∑
i1,⋯,ip

ai1⋯ip xi1⋯xip

 number of equilibria  at = D .  

 Quenched complexity 

𝒩k(ϵ) = x* ℰ ϵ

Σk(ϵ) = lim
D→∞

⟨log 𝒩k(ϵ)⟩
D

 Count & classify◼

 “Short-time” dynamics   approaches asymptotically the threshold energy [marginally stable minima] and agest ∼ O(D0)

ℰ = Dϵ

Σ k
(ϵ

)

exponentially-many minima  
& low-index saddles

high-index  
saddles k ∝ D

Threshold - marginal stability

 Link to dynamics ◼

 To explore bottom of the landscape (and eventually equilibrate) need : jumps between stable minima.t(D) ∼ O(eD)

Cavagna, Giardina, Parisi 1998  
Auffinger, Ben Arous, Cerny 2013

Simple Gaussian landscapes.

p ≥ 3
λ

ρ(λ)

0

Hessian  
at threshold
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D
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ℰ = Dϵ

Σ k
(ϵ

)

exponentially-many minima  
& low-index saddles

high-index  
saddles k ∝ D

Threshold - marginal stability

 Link to dynamics ◼

Cavagna, Giardina, Parisi 1998  
Auffinger, Ben Arous, Cerny 2013

The program

Simple Gaussian landscapes.

 “Short-time” dynamics   approaches asymptotically the threshold energy [marginally stable minima] and agest ∼ O(D0)

 To explore bottom of the landscape (and eventually equilibrate) need : jumps between stable minima.t(D) ∼ O(eD)

p ≥ 3
λ

ρ(λ)

0

Hessian  
at threshold
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⟨ℰp(x) ℰp(x′ )⟩ =
D
2 ( x ⋅ x′ 

D )
p

Isotropic correlations:



 Where are unstable attractors, i.e. the saddles?◼

 What happens when the landscape picture breaks down?◼

This talk: two questions.
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 Beyond “standard” landscape-based tools◼

 Direct counting, & how random matrix theory helps◼

This talk: outline.

 The two questions: why relevant, what we can say about them◼
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“Standard” tools & more recent inputs



“Standard” glassy counting techniques. 

Franz and Parisi 1995       
Monasson 1995

When , selects deepest minima (GS).β → ∞

How to pick up & count the  local minima 
(metastable states)? 

𝒩 ∼ eDΣ

Thermodynamics:  𝒵β = ∫ dxe−βℰ(x)

(x)ℰ

 Ground States (GS)←

 metastable states←
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Standard recipes involve “tweaked” equilibrium calculations [~ large deviations]



“Standard” glassy counting techniques. 

Franz and Parisi 1995       
Monasson 1995

The Monasson method

Free energy of  weakly coupled “real replicas” m

f = ∂mF(m, β)

F(m, β) = lim
D→∞,ϵ→0

D−1 ⟨log [∫
m

∏
k=1

dx(i)e−β∑k ℰ(x(k))+ϵ∑kl x(k)x(l)]⟩

Σ = D−1 log 𝒩 = m2∂m ( β F(m, β)
m )

Related to number of metastable states by Legandre 
transform:  F(m, β) ∼ fm − β−1D−1 log 𝒩( f, β)

 Reconstruct parametrically the complexity :Σ

When , selects deepest minima (GS).β → ∞

How to pick up & count the  local minima 
(metastable states)? 

𝒩 ∼ eDΣ

Thermodynamics:  𝒵β = ∫ dxe−βℰ(x)

(x)ℰ

 Ground States (GS)←

 metastable states←

(Take  at the end: free energy energy )β → ∞ f → ϵ

Standard recipes involve “tweaked” equilibrium calculations [~ large deviations]

Mueller, Leuzzi, Crisanti 2006       Developments: 
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“Standard” glassy counting techniques very insightfull. 

1. Need a potential function/ energy landscape.

2. Pick up stable (marginally) stationary points, i.e. local minima.
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however:



Another approach: Kac-Rice formula(s).

Number  of equilibria  such that   and  (arbitrary constraints) 
Random variable with scaling: .

𝒩(ϕ) x* f (x*) = (−∇ℰ(x*)) = 0 Φ(x*) = ϕ
𝒩(ϕ) ∼ eD Σ(ϕ)+o(D)

“Kac-Rice formula”: recipe to compute moments of 𝒩(ϕ)

Higher moments:

𝔼[𝒩(ϕ)] = ∫ℳD

dx 𝒫x (f = 0) 𝔼x det( ∂fi(x)
∂xj ) χΦ(x)=ϕ f = 0

𝔼[𝒩n(ϕ)] = ∫ℳ⊗n
D

n

∏
m=1

dx(m) 𝒫{x(m)} ({f(m) = 0}) 𝔼{x(m)}
n

∏
m=1

det( ∂fi(x(m))
∂x(m)

j ) χΦ(x(m))=ϕ {f(m) = 0}
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Another approach: Kac-Rice formula(s).

Number  of equilibria  such that   and  (arbitrary constraints) 
Random variable with scaling: .

𝒩(ϕ) x* f (x*) = (−∇ℰ(x*)) = 0 Φ(x*) = ϕ
𝒩(ϕ) ∼ eD Σ(ϕ)+o(D)

“Kac-Rice formula”: recipe to compute moments of 𝒩(ϕ)

Higher moments:

𝔼[𝒩(ϕ)] = ∫ℳD

dx 𝒫x (f = 0) 𝔼x det( ∂fi(x)
∂xj ) χΦ(x)=ϕ f = 0

𝔼[𝒩n(ϕ)] = ∫ℳ⊗n
D

n

∏
m=1

dx(m) 𝒫{x(m)} ({f(m) = 0}) 𝔼{x(m)}
n

∏
m=1

det( ∂fi(x(m))
∂x(m)

j ) χΦ(x(m))=ϕ {f(m) = 0}

Complexity via replica trick: Σ(ϕ) = lim
D→∞

𝔼[log 𝒩(ϕ)]
D

= lim
D→∞

lim
n→0

𝔼[𝒩n] − 1
Dn
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 Since forces  are random, need to control random matrix field  ◼ fi(x) M̂ij[x] =
∂fi(x)

∂xj

𝔼[𝒩n(ϕ)] = ∫ℳ⊗n
D

n

∏
m=1

dx(m) 𝒫{x(m)} ({f (m) = 0}) 𝔼{x(m)}
n

∏
m=1

det( ∂fi(x(m))
∂x(m)

j ) χΦ(x(m))=ϕ {f (m) = 0} ∼ eDΣ(n)+o(D)

 Problem of coupled, conditioned random matrices◼

 Gaussian fields: can characterize the whole conditional distribution of matrix field: GOE, weakly 
deformed by conditioning (  finite rank perturbations)
◼

→

12/23

Fyodorov (2004)

The recent input: Random Matrix Theory tooolbox.



 Since forces  are random, need to control random matrix field  ◼ fi(x) M̂ij[x] =
∂fi(x)

∂xj

The recent input: Random Matrix Theory tooolbox.

Fyodorov (2004)

𝔼[𝒩n(ϕ)] = ∫ℳ⊗n
D

n

∏
m=1

dx(m) 𝒫{x(m)} ({f (m) = 0}) 𝔼{x(m)}
n

∏
m=1

det( ∂fi(x(m))
∂x(m)

j ) χΦ(x(m))=ϕ {f (m) = 0} ∼ eDΣ(n)+o(D)

 Problem of coupled, conditioned random matrices◼

possible 
outliers bulk

λ
0

 Gaussian fields: can characterize the whole conditional distribution of matrix field: GOE, weakly 
deformed by conditioning (  finite rank perturbations)
◼

→

Typical spectrum of the Hessians: 
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Stability of equilibria is encoded in the spectrum of matrices. 
For conservative problems, this is Hessian field M̂ij[x] = ∂2

xixj
ℰ(x)



Exponentially-large random quantities  are typically not self-averaging. 𝒩 ∼ eD ΣD+o(D)

Results (even rigorous) on annealed complexity via Kac-Rice:  

Fyodorov 2005-2021  
Ben Arous & Auffinger, 2011-2021  

Auffinger, Ben Arous, Černý 2013 — Wainrib & Touboul 2013 — Fyodorov & Khoruzhenko 2016  — Ge & Ma 2017  
 Ipsen & Forrester 2018 —   Ben Arous, Mei, Montanari & Nica 2019 — Maillard, Ben Arous, Biroli 2020  

Ben Arous, Fyodorov, Khoruzhenko 2020  
Lacroix-A-Chez-Toine & Fyodorov 2022  

Lacroix-A-Chez-Toine, Fyodorov, Fedeli 2023 
[…] 

By convexity: Σ(A) ≥ Σ(Q)

With replicas, though.

Σ(Q) = lim
D→∞

𝔼[log 𝒩]
D

= lim
D→∞

lim
n→0

𝔼[𝒩n] − 1
Dn

Σ(A) = lim
D→∞

log 𝔼[𝒩]
D

“Replicated Kac-Rice” for quenched complexity.  
Three ingredients: isotropy (rotational symmetry), Gaussianity, concentration (of Hessian, e.g. )ρD(λ)

13/23
VR, Ben Arous, Biroli, Cammarota — Physical Review X 9 (2019)



c

Gaussianity, Isotropy, Concentration.

𝔼[𝒩n(ϕ)] = ∫ℳ⊗n
D

n

∏
a=1

dx(a) 𝒫{x(a)} ({f (a) = 0}) 𝔼{x(a)}
n

∏
a=1

det( ∂fi(x(a))
∂x(a)

j ) χΦ(x(a))=ϕ {f (a) = 0} ∼ eDΣ(n)+o(D)

Gaussianity 

‣ All determined by covariances, 
can be computed explicitly

Cab
ij,kl = ⟨ ∂fi(x(a))

∂x(a)
j

∂fk(x(b))
∂x(b)

l ⟩
c

‣ Can treat explicitly conditioning to 
f (a) = 0, Φ(x(a)) = ϕ

 finite rank perturbations→

Isotropy 

‣ Joint distributions depend only on 
order parameters 

Qab = D−1 x(a) ⋅ x(b), ma = D−1 x(a) ⋅ 1

‣ Invariant statistics of random 
matrices: GOE, elliptic,…

∫ℳ⊗n
D

n

∏
a=1

dx(a) → ∫
n

∏
a,b=1

dQab

Concentration 

‣ Low-rank perturbations do not 
affect at leading orderρ(λ)

‣ Variational problem: self-
consistent equations for Qab, ma .

ℜλ

ℑλ

 — evalue density of supp[ρ(λ)] M

ϕσ(1 + γ)

−1

For more details: VR, Ben Arous, Biroli, Cammarota, Physical Review X 9 (2019) 14/23



Question 1: where are the unstable attractors?



Descent + aging at threshold

Activated dynamics: jumps 
between minima, crossing barriers 

  but               t ≫ 1 t ≠ O(D)

Motivation: activated dynamics.

Described by mean-field dynamical 
equations 

energy barrierτjump ∼ O(eDΔϵ), Δϵ =

Typically 
minima

Saddles 
index ∼ O(D)

threshold

t=0  ∂t xi(t) = − ∂iℰp(x) + η(t)
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Descent + aging at threshold

Activated dynamics: jumps 
between minima, crossing barriers 

  but               t ≫ 1 t ≠ O(D)

Motivation: activated dynamics.

 Open problem:  dynamical theory for activated regime ◼

Described by mean-field dynamical 
equations 

 Technically:  “standard” mean-field description obtained taking 
 and then .  Here we need : HARD!

◼

D → ∞ t → ∞ t ∼ eDτ → ∞

energy barrierτjump ∼ O(eDΔϵ), Δϵ =

Typically 
minima

Saddles 
index ∼ O(D)

threshold

t=0  ∂t xi(t) = − ∂iℰp(x) + η(t)

 minimum
accessible saddle Rizzo 2021 
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Trap models & beyond.

EThreshold

Ei
Ej

Random walk between  traps of random  
depth via climbing up to fixed level EThreshold  

eαN

o Transition prob.        P(Ei → Ej) ∝ e−β(ETh−Ei)

o Fully connected & renewal

   Captures long-time dynamics (Metropolis) of 
   Random Energy Model  — no  
   correlations in the landscape

▪    Barriers: how high system needs to climb up     
▪    Connectivity: which part of conf. space accessible afterwards 
▪    Dependence on energy of departing trap ?

τ ∼ eNΔϵ

ϵ0

Bouchaud 1992 
Dyre 1987 

Gayrard 2017 
 minimum  
of energy ϵ0

accessible saddle

The Trap model paradigm  Dynamical approach. Beyond fully-connected: trap 
model on random networks.
◼

Margiotta, Kuhn, Sollich 2019 
Tapias, Paprotzki, Sollich 2023

 Landscape approach. -spin: a landscape with statistical 
correlations. Which saddles can be used to escape from one 
particular minimum?

◼ p
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 P. Sollich talk→



The distribution of energy barriers.

 Doubly-constrained complexity : index-1 saddles, in given region  ◼ Σ1(ϵ; q, ϵ0) = lim
D→∞

⟨log 𝒩k=1(ϵ; q, ϵ0)⟩
D

 - reference minimum of energy s0 ϵ0

 - connected saddles

q = s ⋅ s0

increasing distance to reference minimum

en
er

gy

outlier λiso bulk
λ

0

evalue density  
of Hessians

connected saddles

q
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The distribution of energy barriers.

 Doubly-constrained complexity : index-1 saddles, in given region  ◼ Σ1(ϵ; q, ϵ0) = lim
D→∞

⟨log 𝒩k=1(ϵ; q, ϵ0)⟩
D

 - reference minimum of energy s0 ϵ0

 - connected saddles

q = s ⋅ s0

increasing distance to reference minimum

en
er

gy

outlier λiso bulk
λ

0

evalue density  
of Hessians

connected saddles

 Give access to statistics of energy barriers  distribution of escape times in activated dynamics ◼ →
o Optimal barrier  is non-linear in  — unlike Bouchaud trap-model 
o Deepest minima have larger convex surrounding 

ΔE = D(ϵ* − ϵ0) ϵ0
1 − q*(ϵ0)

VR, Biroli, Cammarota  EPL 126 (2), 20003 (2019)For details:

q

VR, J Phys A: Math Theor 53 2020 17/23



 Issue: saddles are subleading: . 
When targeting & counting saddles, need to condition 
explicitly on unstable modes of Hessian.

◼ Σsaddles < Σminima

 Joint large deviations of smallest Hessian eigenvalue & 
projection of eigenvector  in direction  of reference 
minimum 

◼

u ̂e
u = |u ⋅ ̂e |

0 �
<latexit sha1_base64="i5uJXrdTgJR9zK2/aK9JIg3LX54=">AAAB73icbVDLSgMxFL2pr1pfVZdugkVwVWaqoMuiG5cV7APaoWQymTY0kxmTjFCG/oQbF4q49Xfc+Tdm2llo64HA4Zxzyb3HTwTXxnG+UWltfWNzq7xd2dnd2z+oHh51dJwqyto0FrHq+UQzwSVrG24E6yWKkcgXrOtPbnO/+8SU5rF8MNOEeREZSR5ySoyVegNhowGpDKs1p+7MgVeJW5AaFGgNq1+DIKZpxKShgmjdd53EeBlRhlPBZpVBqllC6ISMWN9SSSKmvWy+7wyfWSXAYazskwbP1d8TGYm0nka+TUbEjPWyl4v/ef3UhNdexmWSGibp4qMwFdjEOD8eB1wxasTUEkIVt7tiOiaKUGMryktwl09eJZ1G3b2oN+4va82boo4ynMApnIMLV9CEO2hBGygIeIZXeEOP6AW9o49FtISKmWP4A/T5A3Toj5U=</latexit>

⇢(�)
<latexit sha1_base64="FYw1Nhpqg0FyI0QYfEvUSsf8Zfg=">AAAB9XicbVDLSsNAFL3xWeOr6tJNsAh1U5Iq6LLoxmUF+4Amlslk0g6dzISZiVJC/8ONC0Xc+i/u/BunbRbaemDgcM653DsnTBlV2nW/rZXVtfWNzdKWvb2zu7dfPjhsK5FJTFpYMCG7IVKEUU5ammpGuqkkKAkZ6YSjm6nfeSRSUcHv9TglQYIGnMYUI22kB18ORdVnJh8h+6xfrrg1dwZnmXgFqUCBZr/85UcCZwnhGjOkVM9zUx3kSGqKGZnYfqZIivAIDUjPUI4SooJ8dvXEOTVK5MRCmse1M1N/T+QoUWqchCaZID1Ui95U/M/rZTq+CnLK00wTjueL4ow5WjjTCpyISoI1GxuCsKTmVgcPkURYm6JsU4K3+OVl0q7XvPNa/e6i0rgu6ijBMZxAFTy4hAbcQhNagEHCM7zCm/VkvVjv1sc8umIVM0fwB9bnD2LHkcc=</latexit>

λtyp
min

— evalue density Hessian

ℙ(λmin = λ, umin = u) = e−DG(λ,u)+o(D)

̂e

Underlying RM problem: large deviations of top eigenpair.

VR, J Phys A: Math Theor 53 2020For details:
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s0 reference minimum, ϵ0

s q

q
 - reference minimums0

 - connected saddles



Question 2: when there is no landscape?

Cugliandolo, Kurchan, Le Doussal, Peliti 1997spin with non conservative forces:p−



⟨αij⟩ =
μ
D

Var(αijαkl) =
σ2

D (δikδjl + γ δilδjk)

‣ Carrying capacity κi ( ≡ κ = 1)

‣ Self-regulation (quadratic term)

‣ Random pairwise interactions

Motivation: dynamics of complex ecosystems.
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dxi(t)
dt

= xi(t) κi − xi(t) −
D

∑
j=1

αijxj(t)

rGLVE - random Generalized Lotka-Volterra equations

abundance of species xi(t) = i = 1,⋯, D

Fyodorov, Khoruzhenko 2016 Galla 2018Bunin 2017



dxi(t)
dt

= xi(t) κi − xi(t) −
D

∑
j=1

αijxj(t)
⟨αij⟩ =

μ
D

Var(αijαkl) =
σ2

D (δikδjl + γ δilδjk)

rGLVE - random Generalized Lotka-Volterra equations

abundance of species xi(t) = i = 1,⋯, D

‣ Carrying capacity κi ( ≡ κ = 1)

‣ Self-regulation (quadratic term)

‣ Random pairwise interactions

Motivation: dynamics of complex ecosystems.

 Symmetric interactions  is a spin 
glass model: dynamics approaches marginally 
stable minima

◼ (γ = 1)

  Asymmetric interactions  : properties of 
equilibria? Which attract dynamics, if any? 
◼ (γ < 1)

Multiple equilibria for .σ > σc =
2

1 + γ

Dynamics  smallσ

Dynamics  largeσ

unstable  
equilibrium?

Arnoulx de Pirey, Bunin 2023

Biroli, Bunin, Cammarota 2018

Rieger 1989 Simulations by F. Roy, 2019

Fyodorov, Khoruzhenko 2016 Galla 2018Bunin 2017
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Well-mixed ecosystems in the lab.

Knobs: community 
size S and average 
strength μ

 Diversity → ϕ
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Multiple equilibria phase: diversities, (in)stability. Chaos?

   complexity of equilibria at fixed diversity ◼ Σ(ϕ, σ) = lim
D→∞

⟨log 𝒩(ϕ, σ)⟩
D

ϕ =
1
D

D

∑
i=1

1x*i >0

γ = 0

Equilibria seen in 
dynamics (?)

VR, Roy, Biroli, Bunin & Turner, PRL 130, 257401 (2023)For details:
VR, Roy, Biroli, Bunin, J. Phys. A 56, 305003 (2023)

 All equilibria are unstable: no marginality  chaotic dynamics, positive Lyapunov?◼ →

Sompolinsky, Crisanti, Sommers  1988

 Give range of diversity accessible for dynamics  not fixed by marginality as for ◼ ← γ = 1

Wainrib, Toboul 2013

21/23

Blumenthal, Rocks, Mehta 2023

General :γ ongoing (with A. Pacco)

cavity }



Back to “standard” counting: a comparison

VR, Roy, Biroli, Bunin & Turner, PRL 130, 257401 (2023)For details:
VR, Roy, Biroli, Bunin, J. Phys. A 56, 305003 (2023)
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 = 0.2494ϕ1RSB

estimate of diversity at the GS 
(fullRSB needed)

Monasson

Kac-Rice



Summary.

 Multiple competing dynamical attractors/stationary 
points is key feature of complex (glassy) systems.
◼

 Characterizing their distribution is relevant for:  
 dynamics beyond mean-field (activated)  
 chaos (instability) vs aging (marginality)….

◼
→
→

1. Count 2. Classify

3. Link to dynamics

configuration space  ℳD
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  Recent formalism (Kac-Rice) lead to interesting 
problems in Random Matrix Theory. 
◼

A review: 

VR, Fyodorov — The high-d landscapes paradigm: spin-
glasses, and beyond (2023)

Saddles & activation: 

VR — Distribution of rare saddles in the p-spin energy 
landscape (2020)

VR, Biroli, Cammarota  — Complexity of energy 
barriers in mean-field glassy systems (2019)

Ecosystems equilibria: 

VR, Roy, Biroli, Bunin, Turner — Generalized Lotka-
Volterra equations with random, non-reciprocal 
interactions: the typical number of equilibria (2023)

VR, Roy, Biroli, Bunin — Quenched complexity of 
equilibria for asymmetric Generalized Lotka-Volterra 
equations (2023)




